首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   4篇
物理学   5篇
  2022年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The spatial chirp generated in the Ti:sapphire multipass amplifier is numerically investigated based on the onedimensional(1D) and two-dimensional(2D) Frantz–Nodvik equations. The simulation indicates that the spatial chirp is induced by the spatially inhomogeneous gain, and it can be almost eliminated by utilization of proper beam profiles and spot sizes of the signal and pump pulses, for example, the pump pulse has a top-hatted beam profile and the signal pulse has a super-Gaussian beam profile with a relatively larger spot size. In this way, a clear understanding of spatial chirp mechanisms in the Ti:sapphire multipass amplifier is proposed, therefore we can effectively almost eliminate the spatial chirp and improve the beam quality of a high-power Ti:sapphire chirped pulse amplifier system.  相似文献   
2.
The underlying mechanism of the spectral cleaning effect of the cross-polarized wave(XPW) generation process was theoretically investigated. This study shows that the spectral noise of an input spectrum can be removed in the XPW generation process and that the spectral cleaning effect depends on the characteristics of the input pulses, such as the chirp and Fourier-transform-limited duration of the initial pulse, and the modulation amplitude and frequency of the spectral noise. Though these factors codetermine the output spectrum of the XPW generation process, the spectral cleaning effect is mainly affected by the initial pulse chirp. The smoothing of the spectrum in the XPW generation process leads to a significant enhancement of the coherent contrast.  相似文献   
3.
Beam quality degradation during the transition from a laser wakefield accelerator to the vacuum is one of the reasons that cause the beam transport distortion, which hinders the way to compact free-electron-lasers. Here,we performed transition simulation to initialize the beam parameters for beam optics transport. This initialization was crucial in matching the experimental results and the designed evolution of the beamline. We experimentally characterized properties of high-quality laser-wakefield-accelerated electron beams, such as transverse beam profile, divergence, and directionality after long-distance transport. By installing magnetic quadrupole lenses with tailored strength gradients, we successfully collimated the electron beams with tunable energies from 200 to 600 MeV.  相似文献   
4.
Xi-Hang Yang 《中国物理 B》2022,31(9):94206-094206
We present a cascaded nonlinear spectral broadening scheme for Nd-doped lasers, featuring with long pulse duration and high average power. This scheme is based on two multi-pass cells (MPCs) and one multiple-plate supercontinuum generation (MPSG), and the numerical investigation is driven by a home-made Nd-doped fiber laser with 12 ps pulse duration, 50 kHz repetition rate and 100 W average power. The MPC-based first two stages allow us to broaden the pulse spectrum to 4 nm and 43 nm respectively, and subsequently, the MPSG-based third stage allows us to reach 235 nm spectral bandwidth. This broadened spectrum can support a Fourier-transfer-limited pulse duration of 9.8 fs, which is shorter than three optical cycles. To the best of our knowledge, it is the first time to demonstrate the possibility of few-cycle pulses generation based on the 10 ps level Nd-doped lasers. Such few-cycle and high average power laser sources should be attractive and prospective, benefiting from the characteristics of structure compact, low-cost and flexibility.  相似文献   
5.
We theoretically study the nonlinear compression of a 20-m J, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar(1 bar = 105Pa), 1.8-m hollow fiber,we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号