首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为了控制水稻螟虫预警和喷洒农药用量,实现对水稻螟虫虫害的无损检测,提出了基于主成分分析特征波段检测方法和基于迭代阈值的最优波段检测方法,确定了水稻茎秆螟虫检测的特征波段和最优波段,提取出单波段和组合波段的图像来分割虫孔,从而实现水稻螟虫的精准的无损检测。首先通过高光谱得到的120个样品反射率信息分析确定了光谱区域为450~1 000 nm。基于主成分分析特征波段检测方法,对高光谱图像进行主成分分析,通过前五个主成分图像比较确定第三主成分图像为最佳,然后根据第三主成分图像中各个波段的贡献率来选取特征波长(668.8和750 nm),最后结合全局阈值分割和图像掩膜等图像处理方法实现对虫孔区域的判别。而利用基于迭代阈值的最优波段检测方法,在可见光波段450~750 nm范围和近红外波段750~1 000 nm范围内应用混合距离挑选最佳的单波段,通过单波段来确定组合波段,对单波段和组合波段进行迭代阈值分割,其中753.5 nm波长分割效果最好,故确定753.5 nm为最优波长,然后提取该波长的图像采用一种基于迭代阈值虫孔提取方法和形态学处理,最后能对水稻茎秆虫孔区域进行判别来实现水稻茎秆虫害是否存在。对60个虫害水稻茎秆和60个正常水稻茎秆进行检测,应用基于主成分分析特征波段检测方法在668.8和750 nm波长处检测率分别为95.8%和93.3%,而应用基于迭代阈值的最优波长检测方法在753.5 nm波长处检测率高达96.7%。说明利用基于迭代阈值的最优波长检测方法对水稻螟虫的检测更加精确,也说明所获取的特征波段和最优波段为以后水稻螟虫虫害的多光谱成像技术提供了理论参考。  相似文献   

2.
柑橘真菌感染部位的高光谱成像快速检测   总被引:1,自引:0,他引:1  
真菌感染是柑橘的一种常见病害,是柑橘腐烂的主要因素,自动化检测出柑橘真菌感染可以有效提高柑橘的商品价值和市场竞争力。运用高光谱成像技术对真菌感染柑橘腐烂部位的缺陷特征进行了快速识别检测。基于ROI提取柑橘真菌感染光谱曲线,对光谱矩阵进行主成分分析,分析权重曲线后得到4个特征波段,分别为615,680,710和725 nm,然后对这4波段组合分别做主成分分析,通过分析权重曲线提取到615和680 nm两个特征波段,基于这两个特征波段做主成分分析,以第2主成分图像为基础识别柑橘真菌感染部位,识别率达到了100%。高光谱成像技术可用于快速检测柑橘真菌感染引起的腐烂缺陷,为开发水果分级和缺陷检测等相关仪器设备的研究提供了理论方法和依据。  相似文献   

3.
高光谱成像技术的库尔勒梨早期损伤可视化检测研究   总被引:2,自引:0,他引:2  
利用高光谱成像技术对库尔勒梨早期损伤进行快速识别检测。以60个库尔勒梨为研究对象,采集380~1 030 nm波段范围内完好样本和损伤后1~7天样本的480幅高光谱图像。提取图像中感兴趣区域(ROI)的平均光谱信息,利用小波变换(WT)对光谱数据进行去噪平滑,将去噪后的全部样本按2∶1的比例分成建模集(320个)和预测集(160个)。利用二阶导数从全谱信息中提取出19个特征波长,分别基于全谱和提取出的特征波长对建模集和预测集进行支持向量机(SVM)建模分析。结果表明,基于全谱和特征波长的判别分析模型中,两者预测集的识别率都达到93.75%,表明提取的特征波长包含了光谱数据中的关键信息。然后,基于特征波长运用波段比运算挑选最佳波段比,根据波段比F值的分布确定光谱图像分割的最佳波长684和798 nm。对最佳波段比(684/798 nm)下的图像,利用选择性搜索(SS)对高光谱图像中样本的完好和损伤区域进行分割,从分割结果来看,1~7天损伤样本的受损区域能够被准确检测出来。研究结果表明:基于高光谱成像技术对库尔勒梨进行损伤鉴别是可行的,该研究所获得的特征波长和波段比为研发在线实时的库尔勒梨损伤检测系统提供支撑。  相似文献   

4.
基于高光谱成像技术的鲜枣裂纹的识别研究   总被引:1,自引:0,他引:1  
裂纹是衡量鲜枣品质的重要指标之一,果皮裂纹加速鲜枣的腐烂,导致鲜枣货架期的缩短,严重降低鲜枣的经济价值。采用高光谱成像技术在380~1 030 nm波段范围内对鲜枣裂纹的位置及大小信息特征进行快速识别。选用偏最小二乘回归(PLSR)、连续投影法(SPA)和全波段图像主成分分析(PCA),得到鲜枣裂纹相关的敏感波段。然后利用选取的鲜枣裂纹的敏感波段对建模集的132个样本建立最小二乘支持向量机(LS-SVM)判别模型,并对预测集的44个样本进行判别。对PLSR-LS-SVM,SPA-LS-SVM和PCA-LS-SVM判别模型采用ROC曲线进行评判,得出PLSR-LS-SVM模型对鲜枣裂纹定性判别的结果(area=1,std=0)最佳。选取PLSR回归系数挑选出的5条鲜枣裂纹敏感波段(467,544,639,673和682 nm)对应的单波段图像进行主成分分析,其中将主成分PC4的图像结合图像处理技术,最终识别出鲜枣裂纹的位置、大小信息。结果表明,采用高光谱成像技术结合光谱图像处理可以实现鲜枣裂纹定性判别和定量识别的研究,为进一步开发相关仪器的研究提供理论方法和依据。  相似文献   

5.
针对夜间溢油探测问题,提出了一种通过紫外(UV)LED诱导并基于高光谱波段差辐射指数的探测方法。通过高光谱成像仪,同步采集了紫外LED和卤素灯两种照明方式下的原油、乳化油和本底海水的高光谱图像。基于33个波段(400~720 nm)辐射值构建了波段差指数作为溢油鉴别特征。特征优化方面,通过增L减R法、Fisher法进行了有效波长的选择,通过多维尺度分析、主成分分析(PCA)、独立分量分析进行了波段特征提取,通过径向基函数-支持向量机模型对结果进行识别。结果表明,基于紫外LED的高光谱波段差指数的溢油探测模式,比卤素灯的波段均值识别率分别提高了6.01%和8.17%,因此紫外LED光源更适合夜间溢油及乳化的准确探测。并且,通过Fisher有效波长选择和通过PCA得到的特征组合两种方法识别效果相当,优选的3波段特征的紫外识别率分别达到了85.89%和87.02%,12特征的溢油准确率均达到了100%,通过Fisher法提取的有效波长(400~420 nm),更适合于实际在线溢油探测。紫外诱导下高光谱的成像的海洋溢油鉴别模型,为夜间海洋溢油探测提供了一种快速鉴别方法。  相似文献   

6.
利用可见/近红外(400~1 000 nm)及近红外(900~1 700 nm)高光谱成像技术对宁夏地区滩寒杂交、盐池滩羊、小尾寒羊三个品种羊肉进行识别研究。针对不同波段光谱特点,分别优选出Baseline及SG卷积平滑光谱预处理方法,并运用连续投影算法(SPA)提取特征波长,结合线性判别分析(LDA)及径向基核函数支持向量机(RBFSVM)模型进行全波段及特征波长识别分析。结果表明不同波段高光谱对羊肉品种识别均获得较好效果,其中400~1 000 nm波段采用Baseline-Fullwave-RBFSVM及12个特征波长下准确率为100%与98.75%,900~1 700 nm波段采用Baseline-Fullwave-RBFSVM及7个特征波长下准确率为96.25%与87.80%;RBFSVM非线性分类准确率高于LDA线性判别结果,400~1 000 nm波段识别准确率优于900~1 700 nm波段,说明三种羊肉在色泽纹理上差异比成分含量显著,利用高光谱成像技术结合RBFSVM方法能够获得较优的羊肉品种识别效果。  相似文献   

7.
高光谱成像技术检测玉米种子成熟度   总被引:1,自引:0,他引:1  
成熟度是影响种子活力的重要因素之一,是种子质量的重要指标。种子分级时将成熟种子和未成熟种子区分开来可提高种子批活力,使种子批活力具有一致性。采用400~1 000 nm波段范围的高光谱成像技术研究成熟和未成熟玉米种子,找出二者区分度最高的特征波段图像,通过图像处理方法进行种子分类。选用主成分分析(PCA)法分析高光谱图像,分析差异最明显的PC2主成分图像的各波段权重系数并提取出特征波段(501 nm)。从70粒成熟度较低玉米种子样本高光谱图像上选取成熟和未成熟两类感兴趣区域,采用偏最小二乘回归(PLSR)法分析两类感兴趣区域的平均光谱,选取与成熟度相关的敏感波段(518 nm)。采用波段比运算并结合KW检验,分析两类感兴趣区域的平均光谱,找出差异最大的最优波段比(640 nm/525 nm)。以864粒玉米种子为研究对象,提取特征波段对应的单波段图像和最优波段比对应的波段比图像,采用图像处理技术分析图像并判别。结果表明:采用单波段灰度图像分割容易将玉米种子冠部的浅色部分误识别为种子成熟度较低的区域,识别准确率低;而采用640 nm/525 nm的波段比图像可以减轻这种不利影响,平均正确识别率为93.9%。该方法可以有效识别未成熟的玉米种子,为进一步开发在线分级装备提供了依据。  相似文献   

8.
应用高光谱成像技术鉴别绿茶品牌研究   总被引:4,自引:0,他引:4  
应用高光谱成像技术,基于光谱主成分信息和图像信息的融合实现名优绿茶不同品牌的鉴别。首先采集6个品牌名优绿茶在380~1 023 nm波长范围的512幅光谱图像,然后提取并分析绿茶样本的可见近红外光谱响应特性,结合主成分分析法找到了最能体现这6类样本差异的2个特征波段(545和611 nm),并从这2个特征波段图像中分别提取12个灰度共生矩阵纹理特征参量包括中值、协方差、同质性、能量、对比度、相关、熵、逆差距、反差、差异性、二阶距和自相关,最后融合这12个纹理特征和三个主成分特征变量得到名优绿茶品牌识别的特征信息,利用LS-SVM建立区分模型,预测集识别率达到了100%,同时采用ROC曲线的评估方法来评估分类模型。结果表明综合应用灰度共生矩阵变量和光谱主成分变量作为LS-SVM模型输入可实现对绿茶品牌的鉴别。  相似文献   

9.
应用高光谱成像技术对不同保藏温度的灵武长枣的可溶性固形物含量进行预测模型建立。提取图像中感兴趣区域的平均光谱数据,经过不同光谱预处理后,利用连续投影法(SPA)选择特征波长,对4℃冷藏光谱提取13个特征波段(421,426,512,598,641,670,675,723,814,906,944,978,982 nm),对常温保藏光谱提取12个特征波段(425,507,555,598,673,680,685,718,809,910,954,978 nm)。对于MSC处理、MSC+SPA处理、Savitzky-Golay平滑处理和SNV 4种预处理方法,筛选出的最优预处理方法是冷藏采用MSC处理、常温采用MSC+SPA处理。对应这两种最优预处理方法,分别建立偏最小二乘法(PLSR)、支持向量机(SVM)、主成分回归(PCR)3种预测模型。在以上获得的6个预测模型中,得出冷藏、常温保藏的最优模型分别为MSCPLSR模型(R2C:0.852,RMSEC:0.940;R2P:0.857,RMSEP:0.894)和MSC+SPA-PLSR模型(R2C:0.872,RMSEC:0.866;R2P:0.787,RMSEP:1.007)。结果表明:利用高光谱成像技术,结合多种预测模型建立,能够测定不同保藏温度下的灵武长枣可溶性固形物含量,实现对灵武长枣准确快速的无损检测。  相似文献   

10.
基于高光谱成像技术和MNF检测苹果的轻微损伤   总被引:1,自引:0,他引:1  
苹果损伤是一种发生在水果采摘和产后处理阶段的不可避免的主要缺陷。为了快速有效地识别苹果的轻微损伤,以具有代表性的双色红富士苹果为研究对象,提出了一种以高光谱成像和最低噪声分离(MNF)变换的苹果轻微损伤识别检测方法。首先,使用高光谱成像系统获取苹果的可见-近红外波段(400~1 000 nm)的图像,对比发现全波段的最低噪声分离变换比主成分分析(PCA)变换可获得更好的识别效果;其次,利用I-RELIEF算法对正常表皮和损伤区域的光谱进行分析得出权值系数图,依据该系数曲线挑选出了5个特征波段(560,660,720,820和960 nm);最后,特征波段和最低噪声分离变换开发了损伤苹果的识别检测算法。利用该算法对80个正常苹果和含有不同时间阶段轻微损伤的苹果进行试验,损伤识别总体正确率为97.1%,试验结果表明,利用该方法和选取的特征波段可以快速有效地识别苹果的早期轻微损伤,为利用多光谱成像技术和最低噪声分离变换在线检测苹果轻微损伤奠定了基础。  相似文献   

11.
基于近红外高光谱成像技术的干制红枣品种鉴别   总被引:4,自引:0,他引:4  
为实现干制红枣的快速鉴别,提出了一种基于近红外高光谱成像技术的鉴别方法。采集四个品种共240个样本干制红枣的近红外高光谱图像(1 000~1 600 nm)。通过主成分分析法(principal component analysis,PCA)、载荷系数法(x-Loading Weights,x-LW)和连续投影算法(successive projections algorithm,SPA)分别提取7个、8个和10个特征波长;基于灰度共生矩阵(gray level co-occurrence matrix, GLCM)提取第一主成分图像的纹理特征。分别以光谱特征、纹理特征、光谱和纹理融合特征作为输入,建立偏最小二乘判别分析(partial least squares-discriminant analysis,PLS-DA)、反向传播神经网络(back-propagation neural network,BPNN)和最小二乘支持向量机(least squares support vector machines,LS-SVM)模型。结果显示,基于融合特征的模型鉴别率高于分别基于光谱特征或纹理特征的模型鉴别率;基于融合特征的BPNN模型的结果最优,对预测集样本鉴别正确率为100%。说明近红外高光谱成像技术可用于干制红枣品种的快速鉴别。  相似文献   

12.
灵武长枣作为宁夏优势特色枣果,具有重要的经济社会价值和科学研究意义。利用可见近红外(Vis/NIR)高光谱成像系统采集60颗完整长枣光谱图像,然后利用损伤装置对60颗完整长枣进行损伤实验,最终得到60颗损伤(内部瘀伤)长枣,高光谱成像系统采集损伤后五个时间段(损伤后2,4,8,12和24 h)长枣的光谱图像。对采集的长枣光谱图像用ENVI软件提取感兴趣(ROI)区域,并计算完整长枣和每个时间段长枣的平均光谱值。原始光谱利用Savitzky-Golay平滑的一阶导数(SG-1)和二阶导数(SG-2)、标准正态变换(SNV)和去趋势(Detrending)、以及SNV-SG-1、SNV-SG-2、Detrending-SG-1、Detrending-SG-2算法进行预处理,原始光谱和预处理光谱建立偏最小二乘判别分析(PLS-DA)分类模型。选择最优的预处理光谱数据,利用连续投影算法(SPA)、间隔随机蛙跳(IRF)、无信息消除变量(UVE)、变量组合集群分析法(VCPA)、区间变量迭代空间收缩法(IVISSA)和IRF-SPA、UVE-SPA、IVISSA-SPA等算法进行特征变量选择,对选择的特征变量建立PLS-DA、线性判别分析(LDA)和支持向量机(SVM)分类判别模型。结果表明,在原始光谱建立的PLS-DA模型中,模型校正集和预测集准确率分别为82.96%和90%。光谱经过预处理后得到SNV-SG-2-PLS-DA为最优分类判别模型,模型校正集和预测集准确率分别为91.11%和96.67%。在特征变量建立的分类模型中,SNV-SG-2-UVE-PLS-DA模型校正集和预测集准确率分别为86.3%和94.44%;SNV-SG-2-SPA-LDA模型校正集和预测集准确率分别为86.3%和83.33%;SNV-SG-2-UVE-SVM模型校正集和预测集准确率分别为77.78%和71.11%。对于分类模型来说线性分类模型(PLS-DA、LDA)分类结果优于非线性分类模型(SVM)分类结果,在线性分类模型结果中PLS-DA优于LDA分类结果,PLS-DA可以更好的提供分类效果。研究表明,利用高光谱结合偏最小二乘判别分析分类模型,可以有效的实现灵武长枣损伤后随时间变化的快速检测,为灵武长枣在线检测提供理论依据。  相似文献   

13.
可见近红外高光谱成像对灵武长枣定量损伤等级判别   总被引:1,自引:0,他引:1  
利用可见近红外(Vis-NIR)高光谱成像技术对完好和损伤等级灵武长枣进行快速识别检测。采用定量损伤装置得到损伤Ⅰ,Ⅱ,Ⅲ,Ⅳ和Ⅴ级的灵武长枣,借助高光谱成像系统采集完好长枣和损伤长枣样本高光谱图像。提取感兴趣区域(region of interest,ROI)并计算样本平均光谱值。利用光谱-理化值共生距离算法(SPXY)将420个长枣样本按3∶1的比例划分校正集315个和预测集105个。灵武长枣原始光谱建立偏最小二乘判别分析(PLS-DA)分类模型,得到校正集和预测集准确率分别为72.70%和86.67%;灵武长枣原始光谱数据采用移动平均(MA)、卷积平滑(SG)、多元散射校正(MSC)、正交信号修正(OSC)、基线校准(baseline)和去趋势(de-trending)等方法进行光谱预处理并建立PLS-DA分类判别模型。通过分析比较,得到MSC-PLS-DA为最优分类判别模型,校正集准确率为76.19%,预测集准确率为86.67%,其中校正集比原始光谱建模准确率提高了3.49%,预测集准确率较原始光谱建模结果未提高;为了提高建模效果,对灵武长枣原始光谱和预处理后的光谱分别采用连续投影算法(SPA)、无信息变量消除(UVE)、竞争性自适应加权抽样(CARS)和区间变量迭代空间收缩法(iVISSA)等算法提取特征波长,建立PLS-DA分类判别模型,结果表明,MSC-CARS-PLS-DA为最优模型组合,校正集准确率为77.14%,预测集准确率为89.52%,建模准确率较原始光谱建模准确率分别提高了4.44%和2.85%。结果表明,Vis-NIR高光谱成像技术结合MSC-CARS-PLS-DA模型可实现灵武长枣损伤等级的快速识别。  相似文献   

14.
影响柑橘生长的病虫药害种类繁多,目前的检测方法大多针对单一病症,开发基于高光谱成像和机器学习的多种类柑橘病虫药害叶片快速精准检测方法,对果园精准施药和柑橘产业健康发展具有重要意义。以果园自然发病的柑橘叶片为研究对象,包括柑橘正常叶(50片)、溃疡病叶(50片)、煤烟病叶(103片)、缺素病叶(60片)、红蜘蛛叶(56片)和除草剂危害叶(85片),采集350~1 050 nm波段内的高光谱数据。分别利用一阶求导(1stDer)、多元散射校正(MSC)和中值滤波(MF)方法对原始(Origin)高光谱数据进行预处理,对预处理后的高光谱数据采用主成分分析(PCA)和竞争性自适应重加权(CARS)算法提取特征波长,CARS降维得到的特征波长分别为10个、5个、12个和10个,4组PCA提取的特征波长均为7个,两种方法所得特征波长范围都集中在700~760 nm波段内。对全波段(FS)使用极限梯度提升树(XGBoost)算法,特征波长使用支持向量机(SVM)建立柑橘病叶多分类模型。采用XGBoost建立的检测识别模型有Origin-FS-XGBoost,1stDer-FS-XGBoost,MSC-FS-XGBoost和MF-FS-XGBoost,对6种病虫害叶片检测得到的整体分类准确率(OA)分别为94.32%,93.60%,95.98%和96.56%;SVM建立的检测识别模型为Origin-CARS-SVM,1stDer-CARS-SVM,MSC-CARS-SVM,MF-CARS-SVM,Origin-PCA-SVM,1stDer-PCA-SVM,MSC-PCA-SVM和MF-PCA-SVM,各模型OA依次为93.63%,90.26%,87.90%,91.95%,87.53%,90.82%,83.50%和90.98%。结果表明,以FS为输入的XGBoost模型识别率整体优于以特征波长为输入的SVM模型,MF-FS-XGBoost模型OA为96.56%,召回率(Recall)为95.91%,模型训练时间(Train-time)为63 s,综合性能最好;CARS-SVM建模效果优于PCA-SVM,在3种预处理方式下,CARS-SVM模型识别率均高于87%,PCA-SVM模型识别率均在83%以上。结果证实了,高光谱成像技术结合机器学习方法可实现多种类柑橘病虫药害分类识别,为柑橘病虫药害快速无损检测和防治提供科学依据。  相似文献   

15.
外部缺陷以及内部可溶性固形物的含量对提升鲜枣的采后附加值和鲜枣后续生产加工具有重要的意义,因此,为了实现同时对鲜枣内外部品质进行快速、准确识别,利用高光谱成像技术(450-1,000 nm)对壶瓶枣的“自然损伤”和可溶性固形物含量同时进行检测研究。首先,对光谱数据进行主成分分析(PCA)得到前7个主成分光谱值,对图像数据采用灰度共生矩阵(GLCM)提取到7项图像纹理指标(对比度、相关性、能量、同质性、方差、均值、熵)。然后,分别使用光谱主成分值、图像纹理特征值、以及主成分与纹理特征融合值建立偏最小二乘支持向量机(LS-SVM)模型对壶瓶枣的外部缺陷(“自然损伤”)和内部品质(可溶性固形物含量)进行检测研究。结果表明:使用主成分与纹理特征融合值建立的LS-SVM模型可作为通用模型同时对壶瓶枣内外部品质进行检测研究,其“自然损伤”判别正确率为92.5%,可溶性固形物预测集的预测相关系数(Rp)和预测均方根误差(RMSEP)分别达到了0.944和0.495。表明,采用高光谱成像技术可以建立通用模型同时对壶瓶枣的内外部品质进行检测,该研究为壶瓶枣的无损检测提供了理论参考。  相似文献   

16.
高光谱成像技术无损检测赣南脐橙表面农药残留研究   总被引:1,自引:0,他引:1  
高光谱成像技术具备图像和光谱的双重优势,作为一种快速无损检测分析技术,检测过程无损、无污染和无接触。高光谱成像数据包括样本的图像信息和光谱信息,采集样本高光谱成像数据时,样本的每个像素点都有一条光谱与之对应,样本的每个波长都有一幅灰度图像与之对应。研究采用高光谱成像技术无损检测不同稀释浓度的农药在赣南脐橙样品表面残留随时间变化的关系。用蒸馏水把农药分别配置成1∶20, 1∶100和1∶1 000倍的溶液。然后把不同浓度的溶液滴到30个洗净的脐橙表面, 将涂有农药的脐橙分别放置0,4和20 d,然后采集在900~1 700 nm波长范围的高光谱成像原始数据。通过主成分分析获取930,980,1 100,1 210,1 300,1 400,1 620和1 680 nm共8个特征波长,基于这些特征波长做第二次主成分分析,应用PC-2图像并经过适当的图像处理方法对不同浓度及放置不同天数的农药残留进行无损检测。采用高光谱成像技术检测三个时间段较高稀释浓度的果面农药残留都比较明显。高光谱成像技术作为一种检测方法,可用于评价各个时间段较高浓度的农药残留。  相似文献   

17.
高光谱成像可将图像和光谱相结合,同时获得目标对象的图像和光谱信息,已在农产品定性和定量分析检测方面得到广泛利用。利用可见-近红外高光谱成像结合化学计量学方法对贮藏期内灵武长枣果糖含量进行无损检测。采用高效液相色谱测量长枣果糖含量的化学值,可见-近红外高光谱系统采集长枣的高光谱图像,提取每个样本感兴趣区域的平均光谱;建立长枣贮藏期的径向基核函数支持向量机(radial basis kernel function support vector machine,RBF-SVM)模型;分别选用正交信号校正法(orthogonal signal correction,OSC)、多元散射校正(multiplicative scatter correction,MSC)、中值滤波(median-filter,MF)、卷积平滑(savitzky-golay,SG)、归一化(normalization,Nor)、高斯滤波(gaussian-filter,GF)和标准正态变换(standard normalized variate,SNV)等方法对原始光谱进行预处理;为减少数据量,降低维度,提高运算速度,采用反向区间偏最小二乘法(backward interval partial least squares,BiPLS)、间隔随机蛙跳算法(interval random frog,IRF)和竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)对光谱数据提取特征变量;建立全波段和特征波段的偏最小二乘回归(partial least squares regression,PLSR)和主成分回归(principle component regression,PCR)长枣果糖含量预测模型。结果表明:RBF-SVM判别模型校正集准确率为98.04%,预测集准确率为97.14%,能很好地预测长枣的贮藏期;利用BiPLS, IRF及CARS进行降维处理,提取特征波长个数为100, 63和23,占原光谱数据的80%,50.4%和18.4%;为简化模型运算过程并提高模型精度,采用CARS算法对BiPLS及IRF算法所选取的特征波长进行二次筛选,分别优选出18和15个特征波长,占原光谱数据的14.4%和12%,显著减少特征波长数;将全波段光谱与提取出的特征波长分别建立长枣果糖含量的PLSR及PCR预测模型,优选出CARS提取特征波长建立的PLSR模型效果最优,其中校正集的相关系数Rc=0.854 4,均方根误差RMSEC=0.005 3,预测集的相关系数Rp=0.830 3,均方根误差RMSEP=0.005 7,说明CARS有效地对光谱进行降维,简化了数据处理过程。研究表明,利用可见-近红外高光谱成像结合化学计量学方法及计算机编程,可以有效的实现灵武长枣果糖含量的快速无损分析,为灵武长枣内部品质的检测提供理论依据。  相似文献   

18.
开展了低温冷冻和机械损伤条件下马铃薯高光谱图像特征响应特性研究。采用卓立汉光公司Image~λ“谱像”系列高光谱相机获取完好的、低温冷冻和机械损伤条件下的光谱波段范围为387~1 035 nm的马铃薯高光谱图像;截取校正后的像素尺寸大小为60×60的马铃薯高光谱中部完好的图像并计算该区域平均反射率值;冻伤的马铃薯样本的反射光谱曲线在440,560和680 nm附近有明显吸收峰;机械损伤样本在560和680 nm附近有明显吸收峰,在680 nm附近吸收峰谷值明显低于冻伤样本;完好的马铃薯样本反射光谱曲线相对较为平滑,在560和680 nm附近未见明显吸收峰;撞伤样本在440,560和680 nm附近存在吸收峰,而在410 nm附近有一个明显的反射峰。四类马铃薯样本的反射光谱曲线特征峰值表现出一定的指纹特性,因而可以被用于后续品质特征检测分析使用。由于仪器或检测环境、光照强弱等因素影响,光谱数据中掺杂噪声,因此采用化学计量学预处理方法消除噪声的影响;随机选取70%的马铃薯四类样本的反射光谱作为训练数据,剩余的30%作为测试集;接着,利用极端梯度提升算法、类型提升算法和轻量梯度提升机算法来获取马铃薯高光谱图像的有效特征波谱,减少高维海量高光谱数据对后续品质分类模型的影响;最后,将提取到的有效特征波长构建马铃薯品质判别模型。在建立的分类模型中,使用的轻量梯度提升机+逻辑斯蒂回归达到最高的判别精度98.86%。该研究为将来高光谱图像成像技术在现代农业生产加工过程中马铃薯品质有效监测与控制提供理论基础和技术支撑。  相似文献   

19.
高光谱成像的柑橘病虫害叶片识别方法   总被引:1,自引:0,他引:1  
为监测柑橘生长状况,实现病虫害无损识别,利用高光谱成像技术和机器学习方法进行柑橘病叶分类研究。使用高光谱成像仪采集46片柑橘正常叶、46片溃疡病叶、80片除草剂危害叶、51片红蜘蛛叶和98片煤烟病叶的高光谱图像,在478~900 nm光谱范围内对每个叶片一个或多个发病区提取5×5的感兴趣区域(ROI),将ROI内每个像素的反射率值作为光谱信息,则一个ROI得到25个光谱信息样本,最终五类叶片共得到13250个光谱样本。利用随机法将全部样本划分为9 938个训练集和3 312个测试集。分别采用一阶求导(1stDer)、多元散射校正(MSC)和标准正态变换(SNV)三种方法对原始光谱信息进行预处理,对不同预处理方法后的数据采用主成分分析法(PCA)提取特征波长。1st Der预处理后得到7个特征波长,分别是520.2,689.0,704.8,715.4,731.2,741.8和757.6 nm;MSC和SNV预处理后得到7个相同的特征波长,分别是551.9,678.5,704.8,710.1,725.9,731.2和757.6 nm;原始光谱得到7个特征波长,分别是525.5,678.5,710.1,720.7,725.9,757.6和762.9 nm。分析PCA后的样本分布散点图可知,正常叶片、溃疡病叶片和红蜘蛛叶片样本有一定程度聚类,除草剂叶片和煤烟病叶片样本有大量重叠,仅依据PCA不能完成病虫害叶片的识别。对全波段(FS)和PCA特征波长数据在不同预处理方法下进行支持向量机(SVM)和随机森林(RF)建模,结果表明:数据在1stDer预处理方法下识别效果最佳,1st Der-FS-SVM模型总分类精度(OA)为95.98%,Kappa系数为0.948 2,1st Der-FS-RF模型OA为91.42%,Kappa系数为0.889 2,1stDer-PCA-SVM模型OA为90.82%,Kappa系数为0.881 6,1stDer-PCA-RF模型的OA为91.79%,Kappa系数为0.894;对PCA选择的特征波长数据建模,SVM和RF模型下识别率均达到84%,全波段下模型识别率在88%以上,FS数据建模效果优于PCA特征波长。研究结果表明,高光谱成像技术结合机器学习方法进行柑橘叶片分类是可行且有效的,为柑橘病虫害的无损准确识别提供理论根据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号