首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   9篇
  国内免费   1篇
物理学   10篇
  2022年   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Cold molecules have great scientific significance in high-resolution spectroscopy, precision measurement of physical constants, cold collision, and cold chemistry. Supersonic expansion is a conventional and versatile method to produce cold molecules with high kinetic energies. We theoretically show here that fast-moving molecules from supersonic expansion can be effectively decelerated to any desired velocity with a rotating laser beam. The orbiting focus spot of the red-detuned laser serves as a two-dimensional potential well for the molecules. We analyze the dynamics of the molecules inside the decelerating potential well and investigate the dependence of their phase acceptance by the potential well on the tilting angle of the laser beam. ND_3 molecules are used in the test of the scheme and their trajectories under the impact of the decelerating potential well are numerically simulated using the Monte Carlo method. For instance, with a laser beam of20 k W in power focused into a pot of 40 μm in waist radius, ND_3 molecules of 250 m/s can be brought to a standstill by the decelerating potential well within a time interval of about 0.73 ms. The total angle covered by the rotating laser beam is about 5.24?with the distance travelled by the potential well being about 9.13 cm. In fact, the molecules can be decelerated to any desired velocity depending on the parameters adopted. This scheme is simple in structure and easy to be realized in experiment. In addition, it is applicable to decelerating both molecules and atoms.  相似文献   
2.
We propose a simple scheme for trapping cold polar molecules in low-field seeking states on the surface of a chip by using a grounded metal plate and two finite-length charged wires that half embanked in an insulating suhstrate, calculate the electric field distributions generated by our charged-wire layout in free space and the corresponding Stark potentials for ND3 molecules, and analyze the dependence of the trapping center position on the geometric parameters. Moreover, the loading and trapping processes of cold ND3 molecules are studied by using the Monte Carlo method. Our study shows that the loading efficiency of the trap scheme can reach 11.5%, and the corresponding temperature of the trapped cold molecules is about 26.4 inK.  相似文献   
3.
郑锐  李松  侯顺永  黄光明  段传喜 《中国物理 B》2008,17(12):4485-4491
This paper reports that the absorption spectra of H2O^+ have been measured by tunable mid-infrared diode laser spectroscopy in the spectral range of 1100-1380 cm^-1. The H2O+ ions are generated in an AC glow discharge of the gaseous mixtures of H2O/He and detected with the velocity modulation technique. Forty new lines are assigned to the ν2 fundamental band of H2O^+ (X^2B1). The observed lines together with other data published previously are fitted to the standard effective Hamiltonian of an asymmetric top, yielding a set of improved rotational constants, spin-rotation constants and their quartic and sextic centrifugal distortion constants for the ν2=1 vibrational state of H2O+.  相似文献   
4.
许雪艳  侯顺永  印建平 《物理学报》2018,67(11):113701-113701
囚禁于阱中的粒子(原子或分子)可获得更长的相互作用时间,因而在精密测量中可获得更高的分辨率.阱中的粒子与外界隔离,从而可以被冷却到更低的温度.因此原子(或分子)阱已广泛应用到许多研究领域.然而中心电场强度为零的势阱会导致粒子发生非绝热跃迁,这是原子或分子损失的主要来源.该损失曾是制备原子玻色-爱因斯坦凝聚的最后一道障碍.本文提出了一种可控的Ioffe型表面微电阱,其电场强度处处不为零,可有效避免分子的非绝热损失.另外,通过调节电压等参数,势阱中心电场强度以及势阱中心距芯片表面的高度可以在较大范围内调节,例如在本文参数下,势阱中心电场强度可在0.15—5.5 kV/cm变化,势阱中心高度可在6.0—17.0μm变化.本文通过有限元软件计算了芯片表面微电阱的电场分布,并用Monte Carlo模拟验证了该方案的可行性.该表面微电阱不仅可用于分子芯片的集成,而且可用于表面量子简并气体的制备.为精密测量、量子计算、表面冷碰撞和冷化学等领域提供了一个平台.  相似文献   
5.
近年来,随着冷分子制备技术的不断发展和冷分子温度的不断降低,冷分子操控技术取得了快速发展,并日趋成熟。文章首先介绍了冷分子导引、分束、反射与聚焦等操控的技术方案、实验结果及其最新研究进展。接着重点介绍冷分子静电囚禁、磁囚禁和光学囚禁的各种方案、实验结果及最新进展。最后就冷分子操控技术的应用进行了简单的总结与展望。  相似文献   
6.
Ya-Bing Ji 《中国物理 B》2022,31(10):103201-103201
Preparation and control of cold molecules are advancing rapidly, motivated by many exciting applications ranging from tests of fundamental physics to quantum information processing. Here, we propose a trapping scheme to create high-density cold molecular samples by using a combination of electric and magnetic fields. In our theoretical analysis and numerical calculations, a typical alkaline-earth monofluoride, MgF, is used to test the feasibility of our proposal. A cold MgF molecular beam is first produced via an electrostatic Stark decelerator and then loaded into the proposed electromagnetic trap, which is composed of an anti-Helmholtz coil, an octupole, and two disk electrodes. Following that, a huge magnetic force is applied to the molecular sample at an appropriate time, which enables further compressing of the spatial distribution of the cold sample. Molecular samples with both higher number density and smaller volume are quite suitable for the laser confinement and other molecular experiments such as cold collisions in the next step.  相似文献   
7.
王强  魏斌  郭恒娇  李胜强  侯顺永  印建平 《中国物理 B》2017,26(11):113701-113701
A scheme of surface manipulation and control of polar molecules is proposed, which combines three tools of electrostatic velocity filtering, bunching, and storing. In the scheme, a slow molecular beam is produced from an effusive beam by surface velocity filtering. Then the velocity spread of the slow molecular beam is compressed by a buncher consisting of a series of electrodes. Following that the molecular beam with a narrow velocity spread is stored in a storage ring. Using ND_3 molecule as a tester, the feasibility of our scheme is analyzed theoretically and verified via numerical simulations that cover all three manipulation processes. The results show that cold molecular samples can be prepared from a thermal gas reservoir and stored in the storage ring with more than 10 round trips. Our combined scheme facilitates the production and manipulation of polar molecules, offering new opportunities for basic research and intriguing applications such as quantum information science and cold collisions.  相似文献   
8.
王琴  李胜强  侯顺永  夏勇  汪海玲  印建平 《中国物理 B》2014,23(1):13701-013701
We propose a simple scheme for trapping cold polar molecules in low-field seeking states on the surface of a chip by using a grounded metal plate and two finite-length charged wires that half embanked in an insulating substrate, calculate the electric field distributions generated by our charged-wire layout in free space and the corresponding Stark potentials for ND3 molecules, and analyze the dependence of the trapping center position on the geometric parameters. Moreover, the loading and trapping processes of cold ND3 molecules are studied by using the Monte Carlo method. Our study shows that the loading efficiency of the trap scheme can reach 11.5%, and the corresponding temperature of the trapped cold molecules is about 26.4 mK.  相似文献   
9.
Two novel electrostatic traps named octopole-based disk electrostatic trap(ODET)and tubular-based disk electrostatic trap(TDET)are proposed for trapping cold polar molecules in low-field-seeking states.Using MgF as the target molecule,single loading and multi-loading methods are numerically simulated with varied incident velocities of slow molecular beams in the two types of traps,respectively.In ODET,with an incident velocity of 10 m/s,a highest loading efficiency of 78.4% or 99.9% has been achieved under the single loading or multi-loading operation mode.In TDET,with an incident velocity of 11 m/s,a highest loading efficiency of 81.6% or 106.5% has been achieved using the two loading methods,respectively.With such high loading efficiencies,the trapped cold molecules can be applied in the researches of cold collisions,high precision spectroscopy,and precision measurements.Especially,together with a blue-detuned hollow beam,the new electrostatic traps proposed here offer a new platform for the following gradient-intensity cooling of MgF molecules,which may provide a new way to produce high density ultracold molecules.  相似文献   
10.
刘建平  侯顺永  魏斌  印建平 《物理学报》2015,64(17):173701-173701
本文基于自行研制的第二代(180级)静电Stark减速器, 展开了对NH3的有效减速与冷却的理论研究. 首先, 计算了NH3分子在|J=1, K=1>量子态的Stark分裂, 研究了不同的同步相位角下, 减速器中NH3分子的纵向相空间稳定区域; 接着, 采用Monte-Carlo方法研究了该分子在传统工作模式下的减速效果, 并讨论了该减速模式下多个参数(包括每级损失动能、分子波包末速度和相对减速效率)与同步相位角的依赖关系, 以及减速波包末速度与减速电压的关系, 研究发现: 采用传统的Stark减速模式, 当减速电压为±13 kV、同步相位角φ0=26.08°时, 即可实现NH3从280 m/s到6.7 m/s的有效减速, 对应平动动能减少了99.9%, 其波包温度由1.34 K降至80 mK; 最后, 研究了先聚束后减速模式下NH3分子的减速效果, 以及该减速模式下减速波包末速度与同步相位角的依赖关系, 结果表明: 当减速电压为± 6.5 kV, 采用前15级电极作为聚束电极, 后165级作为减速电极时, 可将NH3分子波包的中心速度由280 m/s减至20.7 m/s, 平动动能减少了99.4%, 温度由1.34 K降至1.6 mK, 与传统减速模式相比, 冷分子波包温度降低至1/50. 由此可见, 采用180级的传统Stark减速器完全可以实现具有较低Stark势能的NH3分子的有效减速与冷却, 并获得温度约为1 mK的冷分子波包, 为进一步的实验研究提供了可靠的理论依据.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号