首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
王琴  李胜强  侯顺永  夏勇  汪海玲  印建平 《中国物理 B》2014,23(1):13701-013701
We propose a simple scheme for trapping cold polar molecules in low-field seeking states on the surface of a chip by using a grounded metal plate and two finite-length charged wires that half embanked in an insulating substrate, calculate the electric field distributions generated by our charged-wire layout in free space and the corresponding Stark potentials for ND3 molecules, and analyze the dependence of the trapping center position on the geometric parameters. Moreover, the loading and trapping processes of cold ND3 molecules are studied by using the Monte Carlo method. Our study shows that the loading efficiency of the trap scheme can reach 11.5%, and the corresponding temperature of the trapped cold molecules is about 26.4 mK.  相似文献   

2.
许雪艳  马慧  印建平 《中国物理》2007,16(12):3647-3654
We propose a novel scheme in which cold polar molecules are trapped by an electrostatic field generated by the combination of a pair of parallel transparent electrodes (i.e., two infinite transparent plates) and a ring electrode (i.e., a ring wire). The spatial distributions of the electrostatic fields from the above charged wire and the charged plates and the corresponding Stark potentials for cold CO molecules are calculated; the dependences of the trap centre position on the geometric parameters of the electrode are analysed. We also discuss the loading process of cold molecules from a cold molecular beam into our trap. This study shows that the proposed scheme is not only simple and convenient to trap, manipulate and control cold polar molecules in weak-field-seeking states, but also provides an opportunity to study cold collisions and collective quantum effects in a variety of cold molecular systems, etc.  相似文献   

3.
We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.  相似文献   

4.
许雪艳  陈海波  印建平 《物理学报》2009,58(3):1563-1568
提出了采用双环形载荷导线和两透明电极系统实现冷分子静电囚禁的可控制静电双阱的新方案,计算了带电圆导线和带电板所产生的静电场分布,从几个方面分析了这个囚禁方案的优点. 提出了一种有效的冷分子装载方法,并研究了双阱到单阱的演化过程. 研究表明,该可控制静电双阱方案不仅方便装载与操控弱场搜寻态的极性冷分子,而且在分子物质波的干涉、纠缠、冷碰撞,甚至进行双阱分子BEC研究等分子光学领域中有着广阔的应用前景. 关键词: 极性冷分子 静电囚禁 可控制静电双阱 分子光学  相似文献   

5.
李胜强 《中国物理 B》2016,25(11):113702-113702
We propose a versatile electrostatic trap scheme using several charged spherical electrodes and a bias electric held.We hrst give the two-ball scheme and derive the analytical solution of the electric held.In order to make a comparison,we also give the numerical solution calculated by the hnite element software(Ansoft Maxwell).Considering the loading of cold polar molecules into the trap,we give the three-ball scheme.We hrst give the analytical and numerical solutions of the distribution of the electric held.Then we simulate the dynamic process of the loading and trapping cold molecules using the classical Monte Carlo method.We analyze the influence of the velocity of the incident molecular beam and the loading time on the loading efficiency.After that,we give the temperature of the trapped cold molecules.Our study shows that the loading efficiency can reach 82%,and the corresponding temperature of the trapped molecules is about 24.6 mK.At last,we show that the single well divides into two ones by increasing the bias electric held or decreasing the voltages applied to the spherical electrodes.  相似文献   

6.
谢笛舟  卜文浩  颜波 《中国物理 B》2016,25(5):53701-053701
Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However,due to the complex energy levels and the small effective Lande g-factor of the excited states, the traditional magneto-optical trap(MOT) scheme does not work very well for polar molecules. One way to overcome this problem is the switching MOT,which requires very fast switching of both the magnetic field and the laser polarizations. Switching laser polarizations is relatively easy, but fast switching of the magnetic field is experimentally challenging. Here we propose an alternative approach, the microwave-mediated MOT, which requires a slight change of the current experimental setup to solve the problem. We calculate the MOT force and compare it with the traditional MOT and the switching MOT scheme. The results show that we can operate a good MOT with this simple setup.  相似文献   

7.
We demonstrate an electrostatic surface guiding for cold polar molecules over a long distance of 44.5 cm, 0.85 mm above a dielectric substrate, and measure the transverse distribution of the guided supersonic D2O/CH3Br beam and its longitudinal velocity one. Also, we study the dependence of the relative guiding efficiency and the transverse temperature of the guided molecular beam on the guiding voltage, and show that the absolute guiding efficiencies from the Monte Carlo simulation and theoretical calculation multiplied by 3 are about equal to the measured relative one.  相似文献   

8.
We discuss the possibility of trapping polar molecules in the standing-wave electromagnetic field of a microwave resonant cavity. Such a trap has several novel features that make it very attractive for the development of ultracold molecule sources. Using commonly available technologies, microwave traps can be built with large depth (up to several Kelvin) and acceptance volume (up to several cm3), suitable for efficient loading with currently available sources of cold polar molecules. Unlike most previous traps for molecules, this technology can be used to confine the strong-field seeking absolute ground state of the molecule, in a free-space maximum of the microwave electric field. Such ground state molecules should be immune to inelastic collisional losses. We calculate elastic collision cross-sections for the trapped molecules, due to the electrical polarization of the molecules at the trap center, and find that they are extraordinarily large. Thus, molecules in a microwave trap should be very amenable to sympathetic and/or evaporative cooling. The combination of these properties seems to open a path to producing large samples of polar molecules at temperatures much lower than has been previously possible.Received: 30 June 2004, Published online: 23 November 2004PACS: 33.80.Ps Optical cooling of molecules; trapping - 34.50.-s Scattering of atoms and molecules - 33.80.-b Photon interactions with molecules - 33.55.Be Zeeman and Stark effects  相似文献   

9.
邓联忠  夏勇  印建平 《中国物理》2007,16(3):707-717
This paper proposes a scheme to guide cold polar molecules by using a single charged wire half embanked in an insulating substrate and a homogeneous bias electric field, which is generated by a plate capacitor composed of two infinite parallel metal plates. The spatial distributions of the electrostatic field produced by the combination of the charged wire and the plate capacitor and the corresponding Stark potentials (including dipole forces) for metastable CO molecules are calculated, the relationships between the electric field and the parameters of our charged-wire layout are analysed. It also studies the influences of the insulator on the electric field distribution and the discharge effect. This study shows that the proposed scheme can be used to guide cold polar molecules in the weak-field -- seeking states, and to form various molecule-optical elements, such as molecular funnel, molecular beam-splitters and molecule interferometer, even to construct a variety of integrated molecule-optical elements and their molecule chips.  相似文献   

10.
Electrostatic guiding of cold polar molecules on a chip   总被引:1,自引:0,他引:1  
We propose a novel scheme to guide cold polar molecules on the surface of an insulating substrate (i.e. a chip) using an electrostatic field generated by the combination of a pair of parallel charged wires and a grounded metal plate. The spatial distributions of the electric fields from the above charged-wire layout and their Stark potentials for cold CO molecules and dipole forces are calculated, and the relationships between the electric field and the geometric parameters of our charged-wire system are analyzed. Our study shows that our charged-wire scheme can be used to guide cold polar molecules in the weak-field-seeking state, and to construct various molecular optical elements, such as a molecular funnel, a molecular beam splitter and a molecular interferometer and so on, to form various integrated molecular optical elements and their molecular chips, and even to generate a continuous wave (CW) cold molecular beam by using a low-pass energy filter based on bent two-wire guiding.  相似文献   

11.
A continuously operated electrostatic trap for polar molecules is demonstrated. The trap has a volume of approximately 0.6 cm3 and holds molecules with a positive Stark shift. With deuterated ammonia from a quadrupole velocity filter, a trap density of approximately 10(8) cm(-3) is achieved with an average lifetime of 130 ms and a motional temperature of approximately 300 mK. The trap offers good starting conditions for high-precision measurements, and can be used as a first stage in cooling schemes for molecules and as a "reaction vessel" in cold chemistry.  相似文献   

12.
We propose a novel scheme to guide cold polar molecules on the surface of an insulating substrate (i.e., a chip) using a static electric field generated by the combination of a pair of parallel charged wires and a grounded metal plate. We calculate the spatial distributions of the electric fields from the above chargedwire layout and their Stark potentials for cold CO molecules, and analyze the relationships between the electric field and the parameters of the charged-wire layout. The result shows that this charged-wire scheme can be used to guide cold polar molecules in the weak-field-seeking state and to form various molecule-optical elements, even to realize a single-mode molecular waveguide on a molecule chip under certain conditions.  相似文献   

13.
We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.  相似文献   

14.
陆俊发  纪宪明  印建平 《物理学报》2006,55(4):1740-1750
提出了一种利用单光束照明二元π相位板与透镜组合系统实现冷原子或冷分子囚禁的可控制光学四阱新方案.计算了四阱的光强分布,讨论了从光学四阱到双阱或到单阱的演化过程,并导出了四阱和双阱几何参数、光强分布、强度梯度及其曲率与光学透镜系统参数间的解析关系.研究表明,通过相对移动二元π相位板可实现光学四阱到双阱或到单阱的连续双向演化,获得了四阱或双阱间距与相位板移动距离的关系.该方案在超冷原子物理、冷分子物理、原子光学、分子光学和量子光学,甚至量子计算及信息处理等领域中有着广阔的应用前景. 关键词: 二元π相位板 可控制光学四阱 原子分子囚禁 原子光学  相似文献   

15.
纪宪明  印建平 《物理学报》2004,53(12):4163-4172
提出了一种采用单光束照明二元π相位板与透镜组合系统产生的适用于冷原子与分子囚 禁的可控制光学双阱方案.计算了双阱的光强分布,研究了双阱到单阱的演化过程,并导出了双阱几何参数、光强分布、强度梯度及其曲率与光学系统参数间的解析关系.研究发现, 通过相对移动二元相位板可实现光学双阱到单阱的连续双向演化,得到了双阱间距与相位板移动距离的关系.该方案不仅简单可行、操作方便,而且在原子物理、原子光学、分子光学和量子光学领域中有着广阔的应用前景. 关键词: 二元相位板 可控制光学双阱 原子囚禁 原子光学 分子光学  相似文献   

16.
We present a versatile electric trap for the exploration of a wide range of quantum phenomena in the interaction between polar molecules. The trap combines tunable fields, homogeneous over most of the trap volume, with steep gradient fields at the trap boundary. An initial sample of up to 10(8), CH(3)F molecules is trapped for as long as 60 s, with a 1/e storage time of 12 s. Adiabatic cooling down to 120 mK is achieved by slowly expanding the trap volume. The trap combines all ingredients for opto-electrical cooling, which, together with the extraordinarily long storage times, brings field-controlled quantum-mechanical collision and reaction experiments within reach.  相似文献   

17.
Stark deceleration has been utilized for slowing and trapping several species of neutral, ground-state polar molecules generated in a supersonic beam expansion. Due to the finite physical dimension of the electrode array and practical limitations of the applicable electric fields, only molecules within a specific range of velocities and positions can be efficiently slowed and trapped. These constraints result in a restricted phase space acceptance of the decelerator in directions both transverse and parallel to the molecular beam axis; hence, careful modeling is required for understanding and achieving efficient Stark decelerator operation. We present work on slowing of the hydroxyl radical (OH) elucidating the physics controlling the evolution of the molecular phase space packets both with experimental results and model calculations. From these results we deduce experimental conditions necessary for efficient operation of a Stark decelerator.  相似文献   

18.
An electrostatic trap for polar molecules is proposed. Loading and trapping of polar molecules can be realized by applying different voltages to the two electrodes of the trap. For ND3 molecular beams centered at ~10 m/s, a high loading efficiency of ~67% can be obtained, as confirmed by our Monte Carlo simulations. The volume of our trap is as large as ~3.6 cm3, suitable for study of the adiabatic cooling of trapped molecules. Our simulations indicate that trapped ND3 molecules can be cooled from ~23.3 m K to 1.47 m K by reducing the trapping voltages on the electrodes from 50.0 k V to1.00 k V.  相似文献   

19.
Ya-Bing Ji 《中国物理 B》2022,31(10):103201-103201
Preparation and control of cold molecules are advancing rapidly, motivated by many exciting applications ranging from tests of fundamental physics to quantum information processing. Here, we propose a trapping scheme to create high-density cold molecular samples by using a combination of electric and magnetic fields. In our theoretical analysis and numerical calculations, a typical alkaline-earth monofluoride, MgF, is used to test the feasibility of our proposal. A cold MgF molecular beam is first produced via an electrostatic Stark decelerator and then loaded into the proposed electromagnetic trap, which is composed of an anti-Helmholtz coil, an octupole, and two disk electrodes. Following that, a huge magnetic force is applied to the molecular sample at an appropriate time, which enables further compressing of the spatial distribution of the cold sample. Molecular samples with both higher number density and smaller volume are quite suitable for the laser confinement and other molecular experiments such as cold collisions in the next step.  相似文献   

20.
陆俊发  周琦  纪宪明  印建平 《物理学报》2011,60(6):63701-063701
提出了一种利用单束平面光波照明液晶空间光相位调制器与透镜组合系统实现在透镜焦平面上的可演化组合三光学势阱方案.分析了该组合三光学势阱的形成原理,计算了势阱的相关特征参数,研究了从组合三光学势阱到双阱或到单阱的双向演化过程.最后,探讨了该组合三光学势阱及其新颖三阱光学晶格方案在实现物质波四波混频、三原子样品冷碰撞性质研究等领域中潜在应用前景. 关键词: 原子光学 原子分子囚禁 液晶空间光相位调制器 组合三光学势阱  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号