首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   16篇
化学   73篇
力学   2篇
数学   7篇
物理学   9篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   2篇
  2019年   16篇
  2018年   2篇
  2016年   8篇
  2015年   10篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   4篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  1999年   1篇
  1980年   2篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
1.
2.
Targeted delivery of doxorubicin still poses a challenge with regards to the quantities reaching the target site as well as the specificity of the uptake. In the present approach, two colloidal nanocarrier systems, NanoCore-6.4 and NanoCore-7.4, loaded with doxorubicin and characterized by different drug release behaviors were evaluated in vitro and in vivo. The nanoparticles utilize a specific surface design to modulate the lipid corona by attracting blood-borne apolipoproteins involved in the endogenous transport of chylomicrons across the blood–brain barrier. When applying this strategy, the fine balance between drug release and carrier accumulation is responsible for targeted delivery. Drug release experiments in an aqueous medium resulted in a difference in drug release of approximately 20%, while a 10% difference was found in human serum. This difference affected the partitioning of doxorubicin in human blood and was reflected by the outcome of the pharmacokinetic study in rats. For the fast-releasing formulation NanoCore-6.4, the AUC0→1h was significantly lower (2999.1 ng × h/mL) than the one of NanoCore-7.4 (3589.5 ng × h/mL). A compartmental analysis using the physiologically-based nanocarrier biopharmaceutics model indicated a significant difference in the release behavior and targeting capability. A fraction of approximately 7.310–7.615% of NanoCore-7.4 was available for drug targeting, while for NanoCore-6.4 only 5.740–6.057% of the injected doxorubicin was accumulated. Although the targeting capabilities indicate bioequivalent behavior, they provide evidence for the quality-by-design approach followed in formulation development.  相似文献   
3.
4.
5.
6.
Both the German and European organic food markets are growing fast, and there is also a rising demand for organic chicken eggs. Consumers are willing to pay higher prices for organic eggs produced in an animal-appropriate environment considering animal welfare. Strict labelling requirements do not prevent chicken eggs from being a subject of food fraud. Conventionally produced (barn/free-range) eggs can easily be mislabeled as organic eggs. Especially because the demand for organically produced chicken eggs is likely to exceed supply in the future, mislabeling appears to be a realistic scenario. Therefore, there is a need for analytical methods that are suitable to classify eggs as being either conventionally or organically produced. Nuclear magnetic resonance (NMR) spectroscopy in combination with multivariate data analysis is a suitable tool to screen eggs according to the different systems of husbandry. Sample preparation is based on a fat extraction method, which was optimised for application to freeze-dried egg yolk. Samples were analysed using typical q-NMR parameters. A nontargeted approach was used for the analysis of the 1H NMR data. Principal component analysis (PCA) was applied followed by a linear discriminant analysis (PCA-LDA) and Monte Carlo cross-validation. In total, 344 chicken eggs (214 barn/free-range eggs and 130 eggs from organic farms), most of them originating from Germany, were used to build and validate the prediction model. The results showed that the prediction model allowed for the correct classification of about 93% of the organic eggs.  相似文献   
7.
8.
9.
10.
Bacterial biofilms are difficult to eradicate because they are less susceptible to antibiotics and more easily develop resistance. Therefore, there is an urgent need for new materials that can combat planktonic bacteria and disrupt established biofilms. To tackle this challenge, we design a multifunctional zwitterionic pillar[5]arene, which can self‐assemble into weakly positively charged nanoaggregates that exhibit antibacterial activity against Gram‐negative Escherichia coli (DH5α) and Gram‐positive Staphylococcus aureus (SH1000) bacterial strains in solution. In addition, the zwitterionic pillar[5]arene can efficiently disrupt pre‐existing Escherichia coli (DH5α) biofilms and kill the biofilm‐enclosed bacteria without rapid generation of resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号