首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   948篇
  免费   26篇
  国内免费   8篇
化学   505篇
晶体学   8篇
力学   32篇
数学   182篇
物理学   255篇
  2023年   8篇
  2021年   15篇
  2020年   15篇
  2019年   11篇
  2018年   14篇
  2017年   11篇
  2016年   22篇
  2015年   26篇
  2014年   26篇
  2013年   57篇
  2012年   55篇
  2011年   63篇
  2010年   36篇
  2009年   33篇
  2008年   44篇
  2007年   46篇
  2006年   36篇
  2005年   37篇
  2004年   36篇
  2003年   42篇
  2002年   32篇
  2001年   10篇
  2000年   4篇
  1999年   6篇
  1998年   6篇
  1997年   8篇
  1996年   4篇
  1995年   4篇
  1994年   9篇
  1993年   12篇
  1992年   11篇
  1991年   10篇
  1990年   10篇
  1989年   7篇
  1988年   7篇
  1987年   10篇
  1986年   11篇
  1985年   20篇
  1984年   19篇
  1983年   9篇
  1982年   15篇
  1981年   13篇
  1980年   4篇
  1979年   4篇
  1977年   4篇
  1975年   7篇
  1973年   6篇
  1933年   4篇
  1927年   5篇
  1908年   3篇
排序方式: 共有982条查询结果,搜索用时 15 毫秒
1.
2.
The efficiency optimization of bulk heterojunction solar cells requires the control of the local active materials arrangement in order to obtain the best compromise between efficient charge generation and charge collection. Here, we investigate the large scale (10–100 μm) inhomogeneity of the photoluminescence (PL) and the external quantum efficiency (EQE) in inverted all‐polymer solar cells (APSC) with regioregular poly(3‐hexylthiophene) (P3HT):poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) active blends. The morphology and the local active polymer mixing are changed by depositing the active layer from four different solvents and by thermal annealing. The simultaneous PL and EQE mapping allowed us to inspect the effects of local irregularities of active layer thickness, polymer mixing, polymer aggregation on the charge generation and collection efficiencies. In particular, we show that the increase of the solvent boiling point affects the EQE non‐uniformity due to thickness fluctuations, the density non‐uniformity of rrP3HT aggregate phase, and the blend components clustering. The thermal annealing leads to a general improvement of EQE and to an F8BT clustering in all the samples with locally decrease of the EQE. We estimate that the film uniformity optimization can lead to a total EQE improvement between 2.7 and 6.3 times. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 804–813  相似文献   
3.
4.
The most intriguing feature of metal–metal bonds in inorganic compounds is an apparent lack of correlation between the bond order and the bond length. In this study, we combine a variety of literature data obtained by quantum chemistry and our results based on the empirical bond valence model (BVM), to confirm for the first time the existence of a normal exponential correlation between the effective bond order (EBO) and the length of the metal–metal bonds. The difference between the EBO and the formal bond order is attributed to steric conflict between the (TM)n cluster (TM=transition metal) and its environment. This conflict, affected mainly by structural type, should cause high lattice strains, but electron redistribution around TM atoms, evident from the BVM calculations, results in a full or partial strain relaxation.  相似文献   
5.
6.
Since hundreds of studies on photoanodes and cathodes show that the electrode/electrolyte interfaces represent a key aspect at the base of dye‐sensitized solar cell (DSSC) performances, it is reported here that these interfaces can be managed by a smart design of the spatial composition of quasi‐solid electrolytes. By means of a cheap, rapid, and green process of photoinduced polymerization, composition‐tailored polymer electrolyte membranes (PEMs) with siloxane‐enriched surfaces are prepared, and their properties are thoroughly described. When assembled in DSSCs, the interfacial action promoted by the composition‐tailored PEMs enhances the photocurrent and fill factor values, thus increasing the global photovoltaic conversion efficiency with respect to the non‐modified PEMs. Moreover, the presence of the siloxane‐chain‐enriched surface increases the hydrophobicity and reduces the water vapor permeation into the device, thus enhancing the cell′s durability.  相似文献   
7.
Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. Motivated by several recent studies of local graph algorithms, we consider the following variant of this problem. Let G be a connected bounded‐degree graph. Given an edge e in G we would like to decide whether e belongs to a connected subgraph consisting of edges (for a prespecified constant ), where the decision for different edges should be consistent with the same subgraph . Can this task be performed by inspecting only a constant number of edges in G ? Our main results are:
  • We show that if every t‐vertex subgraph of G has expansion then one can (deterministically) construct a sparse spanning subgraph of G using few inspections. To this end we analyze a “local” version of a famous minimum‐weight spanning tree algorithm.
  • We show that the above expansion requirement is sharp even when allowing randomization. To this end we construct a family of 3‐regular graphs of high girth, in which every t‐vertex subgraph has expansion . We prove that for this family of graphs, any local algorithm for the sparse spanning graph problem requires inspecting a number of edges which is proportional to the girth.
© 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 183–200, 2017  相似文献   
8.
In this paper, we give a direct construction for a set of dice realizing any given tournament T. The construction for a tournament with n vertices requires dice with n sides if n is odd, sides if n is divisible by 4, and sides if mod 4. This appears to be the most efficient general construction to date. Our construction relies only on a standard construction from graph theory.  相似文献   
9.
Encapsulation can be a suitable strategy to protect natural antimicrobial substances against some harsh conditions of processing and storage and to provide efficient formulations for antimicrobial delivery. Lipid-based nanostructures, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanocarriers (NLCs), are valuable systems for the delivery and controlled release of natural antimicrobial substances. These nanostructures have been used as carriers for bacteriocins and other antimicrobial peptides, antimicrobial enzymes, essential oils, and antimicrobial phytochemicals. Most studies are conducted with liposomes, although the potential of SLNs and NLCs as antimicrobial nanocarriers is not yet fully established. Some studies reveal that lipid-based formulations can be used for co-encapsulation of natural antimicrobials, improving their potential to control microbial pathogens.  相似文献   
10.
Plant-based foods, like fruits, vegetables, whole grains, legumes, nuts, seeds and other foodstuffs, have been deemed as heart healthy. The chemicals within these plant-based foods, i.e., phytochemicals, are credited with protecting the heart. However, the mechanistic actions of phytochemicals, which prevent clinical endpoints, such as pathological cardiac hypertrophy, are still being elucidated. We sought to characterize the overlapping and divergent mechanisms by which 18 selected phytochemicals prevent phenylephrine- and phorbol 12-myristate 13-acetate-mediated cardiomyocyte enlargement. Of the tested 18 compounds, six attenuated PE- and PMA-mediated enlargement of neonatal rat ventricular myocytes. Cell viability assays showed that apigenin, baicalein, berberine hydrochloride, emodin, luteolin and quercetin dihydrate did not reduce cell size through cytotoxicity. Four of the six phytochemicals, apigenin, baicalein, berberine hydrochloride and emodin, robustly inhibited stress-induced hypertrophy and were analyzed further against intracellular signaling and genome-wide changes in mRNA expression. The four phytochemicals differentially regulated mitogen-activated protein kinases and protein kinase D. RNA-sequencing further showed divergence in gene regulation, while pathway analysis demonstrated overlap in the regulation of inflammatory pathways. Combined, this study provided a comprehensive analysis of cardioprotective phytochemicals. These data highlight two defining observations: (1) that these compounds predominantly target divergent gene pathways within cardiac myocytes and (2) that regulation of overlapping signaling and gene pathways may be of particular importance for the anti-hypertrophic actions of these phytochemicals. Despite these new findings, future works investigating rodent models of heart failure are still needed to understand the roles for these compounds in the heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号