首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study of spatial inhomogeneity in inverted all‐polymer solar cells: Effect of solvent and annealing
Authors:Andrea Perulli  Sandro Lattante  Anna Persano  Adriano Cola  Massimo Di Giulio  Marco Anni
Institution:1. Dipartimento di Matematica e Fisica “Ennio De Giorgi,”, Università del Salento, Lecce, Italy;2. IMM‐CNR, Institute for Microelectronics and Microsystems‐Unit of Lecce, National Research Council, Lecce, Italy
Abstract:The efficiency optimization of bulk heterojunction solar cells requires the control of the local active materials arrangement in order to obtain the best compromise between efficient charge generation and charge collection. Here, we investigate the large scale (10–100 μm) inhomogeneity of the photoluminescence (PL) and the external quantum efficiency (EQE) in inverted all‐polymer solar cells (APSC) with regioregular poly(3‐hexylthiophene) (P3HT):poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) active blends. The morphology and the local active polymer mixing are changed by depositing the active layer from four different solvents and by thermal annealing. The simultaneous PL and EQE mapping allowed us to inspect the effects of local irregularities of active layer thickness, polymer mixing, polymer aggregation on the charge generation and collection efficiencies. In particular, we show that the increase of the solvent boiling point affects the EQE non‐uniformity due to thickness fluctuations, the density non‐uniformity of rrP3HT aggregate phase, and the blend components clustering. The thermal annealing leads to a general improvement of EQE and to an F8BT clustering in all the samples with locally decrease of the EQE. We estimate that the film uniformity optimization can lead to a total EQE improvement between 2.7 and 6.3 times. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 804–813
Keywords:annealing  blends  conjugated polymers  photophysics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号