首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2678篇
  免费   95篇
  国内免费   9篇
化学   1869篇
晶体学   30篇
力学   52篇
数学   399篇
物理学   432篇
  2023年   11篇
  2022年   16篇
  2021年   28篇
  2020年   46篇
  2019年   48篇
  2018年   24篇
  2017年   32篇
  2016年   66篇
  2015年   57篇
  2014年   67篇
  2013年   111篇
  2012年   164篇
  2011年   159篇
  2010年   98篇
  2009年   77篇
  2008年   112篇
  2007年   142篇
  2006年   161篇
  2005年   154篇
  2004年   128篇
  2003年   108篇
  2002年   87篇
  2001年   35篇
  2000年   13篇
  1998年   19篇
  1997年   28篇
  1996年   33篇
  1995年   22篇
  1994年   26篇
  1993年   36篇
  1992年   32篇
  1991年   23篇
  1990年   23篇
  1989年   33篇
  1988年   25篇
  1987年   18篇
  1986年   21篇
  1985年   47篇
  1984年   22篇
  1983年   22篇
  1982年   38篇
  1981年   43篇
  1980年   34篇
  1979年   41篇
  1978年   47篇
  1977年   25篇
  1976年   46篇
  1975年   28篇
  1974年   20篇
  1973年   24篇
排序方式: 共有2782条查询结果,搜索用时 182 毫秒
1.
Gold nanoparticle catalysts are important in many industrial production processes. Nevertheless, for traditional C ?C cross‐coupling reactions they have been rarely used and Pd catalysts usually give a superior performance. Herein we report that in situ formed gold metal nanoparticles are highly active catalysts for the cross coupling of allylstannanes and activated alkylbromides to form C ?C bonds. Turnover numbers up to 29 000 could be achieved in the presence of active carbon as solid support, which allowed for convenient catalyst recovery and reuse. The present study is a rare case where a gold metal catalyst is superior to Pd catalysts in a cross‐coupling reaction of an organic halide and an organometallic reagent.  相似文献   
2.
Organocatalysis has revolutionized asymmetric synthesis. However, the supramolecular interactions of organocatalysts in solution are often neglected, although the formation of catalyst aggregates can have a strong impact on the catalytic reaction. For phosphoric acid based organocatalysts, we have now established that catalyst–catalyst interactions can be suppressed by using macrocyclic catalysts, which react predominantly in a monomeric fashion, while they can be favored by integration into a bifunctional catenane, which reacts mainly as phosphoric acid dimers. For acyclic phosphoric acids, we found a strongly concentration dependent behavior, involving both monomeric and dimeric catalytic pathways. Based on a detailed experimental analysis, DFT-calculations and direct NMR-based observation of the catalyst aggregates, we could demonstrate that intermolecular acid–acid interactions have a drastic influence on the reaction rate and stereoselectivity of asymmetric transfer-hydrogenation catalyzed by chiral phosphoric acids.

Supramolecular acid–acid interactions lead to competing monomeric and dimeric pathways in phosphoric acid catalysis – so that stereoselectivities depend on catalyst concentration.  相似文献   
3.
The immobilization of reversible addition–fragmentation chain transfer (RAFT) agents on silica for surface‐initiated RAFT polymerizations (SI‐RAFT) via the Z‐group approach was studied systematically in dependence of the functionality of the RAFT‐agent anchor group. Monoalkoxy‐, dialkoxy‐, and trialkoxy silyl ether groups were incorporated into trithiocarbonate‐type RAFT agents and bound to planar silica surfaces as well as to silica nanoparticles. The immobilization efficiency and the structure of the bound RAFT‐agent film varied strongly in dependence of the used solvent (toluene vs. 1,2‐dimethoxyethane) and the anchor group functionality, as evidenced by atomic force microscopy, transmission electron microscopy, dynamic light scattering, and UV/Vis spectroscopy. Surface‐initiated RAFT polymerizations using functionalized silica nanoparticles revealed that grafted oligomers, which often occur in SI‐RAFT, are not formed within the crosslinked structures that originate from the immobilization, and that RAFT‐agent films that show less aggregation during the immobilization are more efficient during SI‐RAFT in terms of polymer grafting density. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 103–113  相似文献   
4.
In this work, the change of reactivity induced by the introduction of two para-ethynyl substituents (CCSi(iPr)3 or CCH) to the organic electron-donor 1,2,4,5-tetrakis(tetramethylguanidino)-benzene is evaluated. The redox-properties and redox-state dependent fluorescence are evaluated, and dinuclear CuI and CuII complexes synthesized. The Lewis-acidic B(C6F5)3 substitutes the proton of the ethynyl −CCH groups to give new anionic −CCB(C6F5)3 substituents, leading eventually to a novel dianionic strong electron donor in its diprotonated form. Its two-electron oxidation with dioxygen in the presence of a copper catalyst yields the first redox-active guanidine that is neutral (instead of cationic) in its oxidized form.  相似文献   
5.
This article provides a detailed report of our efforts to synthesize the dithiodiketopiperazine (DTP) natural products (−)-epicoccin G and (−)-rostratin A using a double C(sp3)−H activation strategy. The strategy's viability was first established on a model system lacking the C8/C8’ alcohols. Then, an efficient stereoselective route including an organocatalytic epoxidation was secured to access a key bis-triflate substrate. This bis-triflate served as the functional handles for the key transformation of the synthesis: a double C(sp3)−H activation. The successful double activation opened access to a common intermediate for both natural products in high overall yield and on a multigram scale. After several unsuccessful attempts, this intermediate was efficiently converted to (−)-epicoccin G and to the more challenging (−)-rostratin A via suitable oxidation/reduction and protecting group sequences, and via a final sulfuration that occurred in good yield and high diastereoselectivity. These efforts culminated in the synthesis of (−)-epicoccin G and (−)-rostratin A in high overall yields (19.6 % over 14 steps and 12.7 % over 17 steps, respectively), with the latter being obtained on a 500 mg scale. Toxicity assessments of these natural products and several analogues (including the newly synthesized epicoccin K) in the leukemia cell line K562 confirmed the importance of the disulfide bridge for activity and identified dianhydrorostratin A as a 20x more potent analogue.  相似文献   
6.
A specific and robust LC–MS/MS method was developed and validated for the quantitative determination of GDC‐3280 in human plasma and urine. The nonspecific binding associated with urine samples was overcome by the addition of CHAPS. The sample volume was 25 μL for either matrix, and supported liquid extraction was employed for analyte extraction. d6‐GDC‐3280 was used as the internal standard. Linear standard curves (R2 > 0.9956) were established from 5.00 to 5000 ng/mL in both matrices with quantitation extended to 50,000 ng/mL through dilution. In plasma matrix, the precision (RSD) ranged from 1.5 to 9.9% (intra‐run) and from 2.4 to 7.2% (inter‐run); the accuracy (RE) ranged from 96.1 to 107% (intra‐run) and from 96.7 to 104% (inter‐run). Similarly, in urine the precision was 1.5–6.2% (intra‐run) and 1.9–6.1% (inter‐run); the accuracy was 83.1–99.3% (intra‐run) and 87.1–98.3% (inter‐run). Good recovery (>94%) and negligible matrix effect were achieved in both matrices. Long‐term matrix stability was established for at least 703 days in plasma and 477 days in urine. Bench‐top stability of 25 h and five freeze–thaw cycles were also confirmed in both matrices. The method was successfully implemented in GDC‐3280's first‐in‐human trial for assessing its pharmacokinetic profiles.  相似文献   
7.
For optimization and control of pharmaceutically and industrially important reactions, chemical information is required in real time. Instrument size, handling, and operation costs are important criteria to be considered when choosing a suitable analytical method apart from sensitivity and resolution. This present study explores the use of a robust and compact nuclear magnetic resonance (NMR) spectrometer to monitor the stereo-selective formation of α-fluoro-α,β-unsaturated esters from α-fluoro-β-keto esters via deprotonation and deacylation in real time. These compounds are precursors of various pharmaceutically active substances. The real-time study revealed the deprotonation and deacylation steps of the reaction. The reaction was studied at temperatures ranging from 293 to 333 K by interleaved one-dimensional 1H and 19F and two-dimensional 1H–1H COSY experiments. The kinetic rate constants were evaluated using a pseudo first-order kinetic model. The activation energies for the deprotonation and deacylation steps were determined to 28 ± 2 and 63.5 ± 8 kJ/mol, respectively. This showed that the deprotonation step is fast compared with the deacylation step and that the deacylation step determines the rate of the overall reaction. The reaction was repeated three times at 293 K to monitor the repeatability and stability of the system. The compact NMR spectrometer provided detailed information on the mechanism and kinetics of the reaction, which is essential for optimizing the synthetic routes for stepwise syntheses of pharmaceutically active substances.  相似文献   
8.
The suckerin family of proteins, identified from the squid sucker ring teeth assembly, offers unique mechanical properties and potential advantages over other natural biomaterials. In this study, a small suckerin isoform, suckerin‐12, is used to create enzymatically crosslinked, macro‐scale hydrogels. Upon exposure to specific salt conditions, suckerin‐12 hydrogels contracted into a condensed state where mechanical properties are found to be modulated by the salt anion present. The rate of contraction is found to correlate well with the kosmotropic arm of the Hofmeister anion series. However, the observed changes in hydrogel mechanical properties are better explained by the ability of the salt to neutralize charges in suckerin‐12 by deprotonization or charge screening. Thus, by altering the anions in the condensing salt solution, it is possible to tune the mechanical properties of suckerin‐12 hydrogels. The potential for suckerins to add new properties to materials based on naturally‐derived proteins is highlighted.  相似文献   
9.
Ni,N-doped carbon catalysts have shown promising catalytic performance for CO2 electroreduction (CO2R) to CO; this activity has often been attributed to the presence of nitrogen-coordinated, single Ni atom active sites. However, experimentally confirming Ni−N bonding and correlating CO2 reduction (CO2R) activity to these species has remained a fundamental challenge. We synthesized polyacrylonitrile-derived Ni,N-doped carbon electrocatalysts (Ni-PACN) with a range of pyrolysis temperatures and Ni loadings and correlated their electrochemical activity with extensive physiochemical characterization to rigorously address the origin of activity in these materials. We found that the CO2R to CO partial current density increased with increased Ni content before plateauing at 2 wt % which suggests a dispersed Ni active site. These dispersed active sites were investigated by hard and soft X-ray spectroscopy, which revealed that pyrrolic nitrogen ligands selectively bind Ni atoms in a distorted square-planar geometry that strongly resembles the active sites of molecular metal–porphyrin catalysts.  相似文献   
10.
We report the synthesis and characterisation of new examples of meso‐hydroxynickel(II) porphyrins with 5,15‐diphenyl and 10‐phenyl‐5,15‐diphenyl/diaryl substitution. The OH group was introduced by using carbonate or hydroxide as nucleophile by using palladium/phosphine catalysis. The NiPor?OHs exist in solution in equilibrium with the corresponding oxy radicals NiPor?O.. The 15‐phenyl group stabilises the radicals, so that the 1H NMR spectra of {NiPor?OH} are extremely broad due to chemical exchange with the paramagnetic species. The radical concentration for the diphenylporphyrin analogue is only 1 %, and its NMR line‐broadening was able to be studied by variable‐temperature NMR spectroscopy. The EPR signals of NiPor?O. are consistent with somewhat delocalised porphyrinyloxy radicals, and the spin distributions calculated by using density functional theory match the EPR and NMR spectroscopic observations. Nickel(II) meso‐hydroxy‐10,20‐diphenylporphyrin was oxidatively coupled to a dioxo‐terminated porphodimethene dyad, the strongly red‐shifted electronic spectrum of which was successfully modelled by using time‐dependent DFT calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号