首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the determination of GDC‐0425 concentrations in human plasma has been developed and validated. Supported liquid extraction was used to extract plasma samples (50 μL) and the resulting samples were analyzed using reverse‐phase chromatography and mass spectrometry coupled with a turbo‐ionspray interface. The mass analysis of GDC‐0425 was performed using multiple reaction monitoring transitions in positive ionization mode. The method was validated over the calibration curve range of 1.00–1000 ng/mL using linear regression and 1/x2 weighting. Within‐run relative standard deviation ranged from 0.8 to 5.1%, while between‐run RSD varied from 1.9 to 4.7% for QCs. The accuracy ranged from 90.0 to 101.0% of nominal for within‐run and from 94.0 to 100.0% of nominal for between‐run. Overall extraction recovery was 87.4% for GDC‐0425 and 87.9% for GDC‐0425‐d9. Stability of GDC‐0425 was established in human plasma for 374 days at ?20 and ?70 °C and established in reconstituted sample extracts for 88 h when stored at 2–8 °C. Stable‐labeled internal standard was used to minimize matrix effects. This assay was used to characterize the pharmacokinetics of GDC‐0425 in cancer patients.  相似文献   

2.
Determination of amino acids in biofluids is a challenging task because of difficulties deriving from their high polarity and matrix interference. A simple, reliable and high‐throughput hydrophilic interaction UHPLC–MS/MS method was developed and validated for the rapid simultaneous determination of 19 free amino acids in rat plasma and urine samples in this paper. Hydrophilic method with a Waters Acquity UPLC BEH Amide column (100 × 2.1 mm,1.7 μm) was used with a gradient mobile phase system of acetonitrile and water both containing 0.2% formic acid. The analysis was performed on a positive electrospray ionization mass spectrometer via multiple reaction monitoring. Samples of 10 μL plasma and 50 μL urine were spiked with three deuterated internal standards, pretreated with 250 μL acetonitrile for one‐step protein precipitation and a final dilution of urine samples. Good linearities (r > 0.99) were obtained for all of the analytes with the lower limit of quantification from 0.1 to 1.2 μg/mL. The relative standard deviation of the intra‐day and inter‐day precisions were within 15.0% and the accuracy ranged from ?12.8 to 12.7%. The hydrophilic interaction UHPLC–MS/MS method was rapid, accurate and high‐throughput and exhibited better chromatography behaviors than the regular RPLC methods. It was further successfully applied to detect 19 free amino acids in biological matrix.  相似文献   

3.
A liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0152 in human plasma to support clinical development. The method consisted of a solid‐phase extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d7‐GDC‐0152 was used as the internal standard. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 0.02–10.0 ng/mL for GDC‐0152. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 99.3% with a precision (%CV) of 13.9%. For quality control samples at 0.0600, 2.00 and 8.00 ng/mL, the between‐run %CV was ≤8.64. Between‐run percentage accuracy ranged from 98.2 to 99.6%. GDC‐0152 was stable in human plasma for 363 days at ?20°C and for 659 days at ?70°C storage. GDC‐0152 was stable in human plasma at room temperature for up to 25 h and through three freeze–thaw cycles. In whole blood, GDC‐0152 was stable for 12 h at 4°C and at ambient temperature. This validated LC‐MS/MS method for determination of GDC‐0152 was used to support clinical studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
5.
A sensitive and specific ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS‐MS) method for quantification of a newly developed anticancer agent NPD‐103 has been established. An aliquot of human plasma sample (200 µL) was spiked with 13C‐labeled paclitaxel (internal standard) and extracted with 1.3 mL of tert‐butyl methyl ether. NPD‐103 was quantitated on a C18 column with methanol–0.1% formic acid (75:25, v/v) as mobile phase using UPLC‐MS‐MS operating in positive electrospray ionization mode with a total run time of 3.0 min. For NPD‐103 at the concentrations of 1.0, 5.0 and 10.0 µg/mL in human plasma, the absolute extraction recoveries were 95.58, 102.43 and 97.77%, respectively. The linear quantification range of the method was 0.1–20.0 µg/mL in human plasma with linear correlation coefficients greater than 0.999. The intra‐ and inter‐day accuracy for NPD‐103 at 1.0, 5.0 and 10.0 µg/mL levels in human plasma fell into the ranges of 95.29–100.00% and 91.04–94.21%, and the intra‐ and inter‐day precisions were in the ranges of 8.96–11.79% and 7.25–10.63%, respectively. This assay is applied to determination of half‐life of NPD‐103 in human plasma. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In the present study a fast, sensitive and robust validated method to quantify chlorpheniramine in human plasma using brompheniramine as internal standard (IS) is described. The analyte and the IS were extracted from plasma by LLE (diethyl ether–dichloromethane, 80:20, v/v) and analyzed by HPLC‐ESI‐MS/MS. Chromatographic separation was performed using a gradient of methanol from 35 to 90% with 2.5 mm NH4OH on a Gemini Phenomenex C8 5 μm column (50 × 4.6 mm i.d.) in 5.0 min/run. The method fitted to a linear calibration curve (0.05–10 ng/mL, R > 0.9991). The precision (%CV) and accuracy ranged, respectively: intra‐batch from 1.5 to 6.8% and 99.1 to 106.6%, and inter‐batch from 2.4 to 9.0%, and 99.9 to 103.1%. The validated bioanalytical procedure was used to assess the comparative bioavailability in healthy volunteers of two dexchlorpheniramine 2.0 mg tablet formulations (test dexchlorpheniramine, Eurofarma, and reference Celestamine®, Schering‐Plough). The study was conducted using an open, randomized, two‐period crossover design with a 2 week washout interval. Since the 90% confidence interval for Cmax and AUC ratios were all within the 80–125% interval proposed by ANVISA and FDA, it was concluded that test and reference formulations are bioequivalent concerning the rate and the extent of absorption. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A simple, fast and reliable high‐performance liquid chromatography–triple quadrupole mass spectrometry method (HPLC‐MS/MS method) was developed, validated and used for the simultaneous quantification of irinotecan and 7‐ethyl‐10‐hydroxycamptothecin (SN38) in heparinized mouse plasma. Camptothecin was used as the internal standard. A single‐step protein precipitation without evaporation and reconstitution steps was adopted as sample processing method. Our bioanalytical method was validated in compliance with the guidelines from the European Medicines Agency. The lower limit of quantification for both irinotecan and SN38 was 5 ng/mL. The calibration curves for both analytes fitted to a 1/x2 weighted linear regression model and ranged from 5 to 1000 ng/mL. The intra‐run and inter‐run precisions were within 8.6%, and the intra‐run and inter‐run accuracies were within 96.4?103.9%. Our validated bioanalytical method was successfully applied to the pharmacokinetic study in mice, in which 4 mg/kg irinotecan was intraperitoneally injected. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, a reliable ultra‐performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method coupled with an easy, fast and effective sample pretreatment procedure was developed for simultaneous determination of amitraz, chlordimeform, formetanate and their metabolites in human blood. With the procedures of protein precipitation and a phospholipid‐removal step, the endogenous compound interference was significantly reduced, and matrix effects were significantly reduced. The linear ranges of matrix‐matched standard curves were from 0.5 to 1000 ng/mL with coefficients of determination >0.996. Very low limits of detection (0.05–0.12 ng/mL) and limits of quantitation (0.15–0.4 ng/mL) were achieved. Reasonable recoveries ranging from 88.1 to 103.5% were obtained. The intra‐day RSDs ranging from 3.2 to 8.6% and inter‐day RSDs ranging from 4.8 to 9.2% indicated good precision. With the introduction of a phospholipid‐removal step, the ME ranged from 90.1 to 98.5%. The established method was successfully applied to the analysis of a blood sample from a formetanate poisoning case. This method possesses the advantages of high sensitivity, reduced matrix effects and rapidity.  相似文献   

9.
A simple, selective and rapid HPLC‐MS/MS method was developed and validated for the determination of caderofloxacin in human plasma. Sparfloxacin was used as the internal standard (IS). After precipitation with methanol and dilution with the mobile phase, the samples were injected into the HPLC‐MS/MS system. The chromatographic separation was performed on a Zorbax XDB Eclipse C18 column (150 × 4.6 mm, 5 µm) with a mobile phase of ammonium acetate buffer (20 mm, pH 3.0)–methanol, 45:55 (v/v). The MS/MS analysis was done in positive mode. The multiple reaction monitoring transitions monitored were m/z 412.3 → 297.1 for caderofloxacin and m/z 393.2 → 292.2 for the IS. The calibration curve was linear over the range of 50.0–8000 ng/mL with an aliquot of 100 μL plasma. The precision of the assay was 2.0–9.4 and 6.6–11.5% for the intra‐ and inter‐run variability, respectively. The intra‐ and inter‐run accuracy (relative error) was 4.4–10.0 and ?1.2–4.0%. The total run time was 3.5 min. The assay was fully validated in accordance with the US Food and Drug Administration guidance. It was successfully applied to a pharmacokinetic study of caderofloxacin in healthy Chinese volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
An LC–MS/MS‐based bioanalytical method has been developed to measure the concentration of L‐threonate at its endogenous level in human plasma. Following isotope dilution and protein precipitation, the samples were acetylated and chromatographed under reversed‐phase conditions for baseline separation of the derivatized L‐threonate and its stereoisomer D‐erythronate. The method was assessed by a fit‐for‐purpose validation with a calibration range from 100 to 10,000 ng/mL. The intra‐run coefficients of variation (CVs) were <3.6% and the inter‐run CV was 3.2% for the QC samples at endogenous level. At the lower limit of quantitation, the intra‐run CV was 6.1% and the average inaccuracy was ?1.4%. This method provides an efficient and reliable quantitation of L‐threonate and could be useful to certain biomarker investigators.  相似文献   

11.
A high‐throughput LC–MS/MS bioanalytical method was developed and validated for the determination of hydrocortisone in mouse serum via supported liquid extraction (SLE) in a 96‐well plate format. Although sample extracts from SLE result in similar matrix effects compared with conventional liquid–liquid extraction (LLE), greater analyte extraction recovery and much higher analysis throughput for the quantitative analysis of hydrocortisone in mouse serum were obtained. The current LC‐MS/MS method was validated for a concentration range of 2.00–2000 ng/mL for hydrocortisone using a 0.100 mL volume of mouse serum. The intra‐ and inter‐day precision and accuracy of the quality control samples at low, medium and high concentration levels showed ≤12.9% CV and ?3.4–6.2% bias for the analyte in mouse serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Quantitation of Zn‐DTPA (zinc diethylenetriamene pentaacetate, a metal chelate) in complex biological matrix is extremely challenging on account of its special physiochemical properties. This study aimed to develop a robust and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for determination of Zn‐DTPA in human plasma and urine. The purified samples were separated on Proteonavi (250 × 4.6 mm, 5 μm; Shiseido, Ginza, Tokyo, Japan) and a C18 guard column. The mobile phase consisted of methanol–2 mm ammonium formate (pH 6.3)–ammonia solution (50:50:0.015, v/v/v), flow rate 0.45 mL/min. The linear concentration ranges of the calibration curves for Zn‐DTPA were 1–100 μg/mL in plasma and 10–2000 μg/mL in urine. The intra‐ and inter‐day precisions for quality control (QC) samples were from 1.8 to 14.6% for Zn‐DTPA and the accuracies for QC samples were from −4.8 to 8.2%. This method was fully validated and successfully applied to the quantitation of Zn‐DTPA in plasma and urine samples of a healthy male volunteer after intravenous infusion administration of Zn‐DTPA. The result showed that the concentration of Zn‐DTPA in urine was about 20 times that in plasma, and Zn‐DTPA was completely (94.7%) excreted through urine in human.  相似文献   

13.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

14.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A liquid chromatographic–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0834 and its amide hydrolysis metabolite (M1) in human plasma to support clinical development. The method consisted of semi‐automated 96‐well protein precipitation extraction for sample preparation and LC‐MS/MS analysis in positive ion mode using TurboIonSpray® for analysis. D6‐GDC‐0834 and D6‐M1 metabolite were used as internal standards. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 1 – 500 ng/mL for both GDC‐0834 and M1 metabolite. The accuracy (percentage bias) at the lower limit of quantitation (LLOQ) was 5.20 and 0.100% for GDC‐0834 and M1 metabolite, respectively. The precision (CV) for samples at the LLOQ was 3.13–8.84 and 5.20–8.93% for GDC‐0834 and M1 metabolite, respectively. For quality control samples at 3, 200 and 400 ng/mL, the between‐run CV was ≤7.38% for GDC‐0834 and ≤8.20% for M1 metabolite. Between run percentage bias ranged from ?2.76 to 6.98% for GDC‐0834 and from ?6.73 to 2.21% for M1 metabolite. GDC‐0834 and M1 metabolite were stable in human plasma for 31 days at ?20 and ?70°C. This method was successfully applied to support a GDC‐0834 human pharmacokinetic‐based study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A highly selective and efficient LC–MS/MS method was developed to determine the plasma concentration of magnolol, hesperidin, neohesperidin and geniposide following oral administration of Zhi‐Zi‐Hou‐Po decoction in normal and depressed rats. Plasma samples were pretreated by protein precipitation with methanol. Chromatographic separation was performed on an XTerra® MS C18 column using a gradient elution with a mobile phase composed of acetonitrile–0.1% aqueous formic acid. The proposed method was validated to be specific, accurate and precise for the analytes determination in plasma samples. The calibration curves displayed good linearity over definite concentration ranges for the analytes. The intra‐ and inter‐day precision of the proposed method at three different levels were all within <11.13% and the relative errors ranged from ?8.46 to 8.93%. The recovery of the four compounds ranged from 82.72 to 89.08% and no apparent matrix effect was observed during sample analysis. After full validation, the established method was successfully applied for comparing the pharmacokinetics of four components between normal and depressed rats. The results showed that the AUC and Cmax of four analytes in depressed rats were significantly different from those in normal rats and might provide helpful information to guide the clinical use of Zhi‐Zi‐Hou‐Po to treat depression.  相似文献   

17.
A reliable high‐throughput ultra‐high performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for oleanolic acid (OA) determination in rat plasma and liver tissue using glycyrrhetic acid as the internal standard (IS). Plasma and liver homogenate samples were prepared using solid‐phase extraction. Chromatographic separation was achieved on a C18 column using an isocratic mobile phase system. The detection was performed by multiple reaction monitoring mode via positive electrospray ionization interface. The calibration curves showed good linearity (R2 > 0.9997) within the tested concentration ranges. The lower limit of quantification for plasma and liver tissue was ≤0.75 ng/mL. The intra‐ and inter‐day precision and accuracy deviations were within ±15% in plasma and liver tissue. The mean extraction recoveries ranged from 80.8 to 87.0%. In addition, the carryover, matrix effect, stability and robustness involved in the method were also validated. The method was successfully applied to the plasma and hepatic pharmacokinetics of OA after oral administration to rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
An LC‐MS/MS method for the determination of GDC‐0980 (apitolisib) concentrations in dog plasma has been developed and validated for the first time to support pre‐clinical drug development. Following protein precipitation with acetonitrile, the resulting samples were analyzed using reverse‐phase chromatography on a Metasil AQ column. The mass analysis was performed on a triple quadruple mass spectrometer coupled with an electrospray interface in positive ionization mode. The selected reaction monitoring transitions monitored were m/z 499.3 → 341.1 for GDC‐0980 and m/z 507.3 → 341.1 for IS. The method was validated over the calibration curve range 0.250–250 ng/mL with linear regression and 1/x2 weighting. Relative standard deviation (RSD) ranged from 0.0 to 10.9% and accuracy ranged from 93.4 to 113.6% of nominal. Stable‐labeled internal standard GDC‐0980‐d8 was used to minimize matrix effects. This assay was used for the measurement of GDC‐0980 dog plasma concentrations to determine toxicokinetic parameters after oral administration of GDC‐0980 (0.03, 0.1 and 0.3 mg/kg) to beagle dogs in a GLP toxicology study. Peak concentration ranged from 3.23 to 84.9 ng/mL. GDC‐0980 was rapidly absorbed with a mean time to peak concentration ranging from 1.3 to 2.4 h. Mean area under the concentration–time curve from 0 to 24 hours ranged from 54.4 to 542 ng h/mL. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A rapid and selective HPLC‐UV method was developed for the quantification of linezolid (LNZ) in human plasma and bronchoalveolar lavage (BAL) at the concentrations associated with therapy. Plasma samples were extracted by solid‐phase extraction followed by evaporation to dryness and reconstitution in mobile phase solution. The chromatographic separation was carried out on a C18 column with an isocratic mobile phase consisting of dihydrogen phosphate buffer 50 mm (pH 3.5) and acetonitrile (60:40 v/v). The detection was performed using a photodiode array. Under these conditions, a single chromatographic run could be completed within 12 min. The method was validated by estimating the precision and the accuracy for inter‐ and intra‐day analysis in the concentration range of 25–25600 ng/mL. The method was linear over the investigated range with all the correlation coefficients R > 0.999. The intra‐ and inter‐day precision was within 8.90% and the accuracy ranged from ?4.76 to +5.20%. This rapid and sensitive method was fully validated and could be applied to pharmacokinetic study for the determination of LNZ levels in human plasma and BAL samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A simple, sensitive and specific liquid chromatography tandem mass spectrometry (LC‐ESI‐MS/MS) method was developed for the quantification of desvenlafaxine in human plasma using desvenlafaxine d6 as an internal standard (IS). Chromatographic separation was performed using a Thermo‐BDS hypersil C8 column (50 × 4.6 mm, 3 µm) with an isocratic mobile phase composed of 5 mM ammonium acetate buffer: methanol (20:80, v/v), at a flow rate of 0.80 mL/min. Desvenlafaxine and desvenlafaxine d6 were detected with proton adducts at m/z 264.2/58.1 and 270.2/ 64.1 in multiple reaction monitoring positive mode, respectively. Liquid–liquid extraction was used to extract the drug and the IS. The method was linear over the concentration range 1.001–400.352 ng/mL with a correlation coefficient of ≥0.9994. This method demonstrated intra and inter‐day precision within 0.7–5.5 and 1.9–6.8%, and accuracy within 95.3–107.4 and 93.4–99.5%. Desvenlafaxine was found to be stable throughout the freeze–thaw cycles, bench‐top and long‐term matrix stability studies. The developed and validated method can be successfully applied for the bioequivalence/pharmacokinetic studies of desvenlafaxine in pharmaceutical dosage forms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号