首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
力学   7篇
  2014年   2篇
  2013年   3篇
  2010年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
对于面内阶跃载荷作用下矩形薄板的塑性动力屈曲问题,将临界应力和屈曲惯性项指数参数作为双特征参数求解。由相邻平衡准则导出失稳控制方程,由动力屈曲发生瞬间的能量转换和守恒准则,导出波阵面上的屈曲变形补充约束条件。失稳控制方程、边界条件、塑性波阵面上的连续条件和补充约束条件构成了定量求解两个特征参数和动力屈曲模态的完备条件。研究了矩形薄板塑性动力屈曲过程中板的厚宽比、冲击载荷大小、屈曲模态和临界屈曲长度之间的关系。  相似文献   
2.
采用声固耦合方法对夹芯圆柱壳和等质量的普通圆柱壳在爆炸载荷作用下的应变、速度和加速度进行有限元计算。结果表明:夹芯防护层对爆炸冲击波可起到较好的衰减作用,即通过芯层的塑性变形,耗散了冲击过程中产生的大部分能量,对里面的圆柱壳体起到较好的保护作用,由于夹芯防护层的存在,与等质量的普通圆柱壳相比,夹芯圆柱壳能够承受更强的爆炸冲击波,降低结构的整体变形。  相似文献   
3.
采用双向梁函数组合级数逼近的方法构造粘-弹层合悬臂板的横向位移函数,用里兹法得悬臂板在集中力作用下的弯曲变形。用拉格朗日方程求出了板自由振动的频率和结构损耗因子;给出粘-弹层合悬臂板在集中力突然撤去以后瞬态响应的近似解析解。另外,分析了阻尼层损耗因子、弹性模量及厚度对响应的影响。  相似文献   
4.
为了研究冲击载荷作用下考虑应力波效应弹性矩形薄板的动力屈曲,根据动力屈曲发生瞬间的能量转换和守恒准则,导出板的屈曲控制方程和波阵面上的补充约束条件,真实的屈曲位移应同时满足控制方程和波阵面上的附加约束条件。满足上述条件,建立了该问题的完整数值解法,对屈曲过程中冲击载荷、屈曲模态和临界屈曲长度之间的关系进行研究,定量计算了横向惯性效应对提高薄板动力屈曲临界应力的贡献。研究表明:板的厚宽比一定时,临界屈曲长度随冲击载荷的增大而减小;由于屈曲时的横向惯性效应,应力波作用下薄板一阶临界力参数是相应边界板的静力失稳临界力参数的1.5倍;随着边界约束逐渐减弱,板临界力参数逐渐减小,动力特征参数逐渐增大。  相似文献   
5.
从应力波作用下结构动力屈曲的特点出发,指出应力波作用下结构动力屈曲与结构中应力波传播的耦合导致时间成为结构动力屈曲的参变量,从而应力波作用下结构动力屈曲问题中结构的真实运动与邻近运动是不同时刻、不同扰动区域的比较,这使得其动力屈曲控制方程的建立不宜采用传统的等时积分变分原理;以压应力波作用下弹性直杆为例,应用能量守恒原理,根据屈曲时刻结构能量的转换关系,建立了弹性压应力波作用下半无限长直杆的动力屈曲控制方程,并得到了波前附加约束条件;最后,讨论了波前附加约束条件的物理意义,指出波前附加约束条件出现的根本原因是轴向应力波的传播与屈曲不能解耦。  相似文献   
6.
从应力波作用下结构动力屈曲的特点出发,指出应力波作用下结构屈曲与应力波传播的耦合导致时间成为结构屈曲的参变量,从而应力波作用下结构屈曲的真实运动与邻近运动是不同时刻、不同扰动区域的比较,这使得其控制方程的建立不宜采用传统的等时积分变分原理;以压应力波作用下弹性直杆为例,应用能量守恒原理,根据屈曲时刻结构能量的转换关系,建立了其屈曲控制方程,并实际推导得到了波前边界条件为横向位移,转角和曲率为零;其中,波前边界第三个条件出现的原因是轴向应力波的传播与屈曲的耦合.  相似文献   
7.
基于LCF-Kriging模型的结构多失效模式可靠度计算   总被引:1,自引:0,他引:1  
针对多失效模式下结构体系可靠度计算中的代理模型构建成本与计算精度如何权衡的问题,本文以减小体系失效概率预测方差为出发点,推导出最大贡献函数(LCF-Largest Contribution Function)来识别对体系失效概率方差影响较大的样本。LCF函数可减少对体系失效概率方差影响较小区域内样本数量,进而提高代理模型的计算效率;通过置信水平和允许相对误差建立LCF函数的学习停止条件,能够保证已有样本信息不浪费。本文选取能够对多个功能函数联合构建的多输出Kriging模型作为代理模型,基于LCF-Kriging模型并结合MCS对体系可靠度进行计算,功能函数的相关性可通过各失效模式的逻辑关系予以考虑。数值算例表明,在适当的学习停止条件下,对于串联、并联和串并混联的结构体系可靠度评估,本文方法均能在计算精度和计算效率之间达到满意平衡。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号