首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   3篇
  国内免费   22篇
化学   90篇
力学   7篇
数学   6篇
物理学   16篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   11篇
  2019年   7篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   8篇
  2012年   7篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
1.
Transport in Porous Media - Membrane filtration of feed containing multiple species of particles is a common process in the industrial setting. In this work, we propose a model for filtration of a...  相似文献   
2.
Tang  Yixuan  Tian  Qiang  Hu  Haiyan 《Nonlinear dynamics》2022,109(4):2319-2354
Nonlinear Dynamics - To describe the particular mechanical behaviors of beams with both uniform and non-uniform cross sections, such as the bidirectional bending, torsion-bending coupling, the...  相似文献   
3.
开发了HIRFL-CSR外靶实验装置的大型数据分析程序(ANAETF),并成功应用于核物理实验数据分析。详细阐述了该程序中的数据分析流程、漂移室寻迹算法、粒子鉴别方法和反应截面提取技术。利用本程序分析了240 MeV/u能量下12C次级束流打碳靶的实验数据,实现了清楚的碳和硼剩余核的粒子鉴别,总探测效率达到 ~90%,本工作提取的反应截面与已有的实验结果符合较好。  相似文献   
4.
Scaling usually causes serious problems in daily life and industrial production. Currently, developing passive anti-scaling coatings has shown promises to overcome this problem. In this work, we fabricated a scalable and robust bio-inspired organogel(BIO) coating, showing dynamic scale resistance in the oil/brine mixture. The oil layer of the BIO coating was utilized as a barrier to inhibit scale nucleation and reduce scale adhesion. The mechanical strength of the coating was optimized by regulating nanoparticle contents. Moreover, the universality of scale resistance was demonstrated by varying the types of nanoparticles, oils and scales. Compared with commercial pipeline materials, such as copper, this BIO coating significantly reduces scale deposition after 240-h scaling test(ca. 93% reduction). Therefore, this study designs scalable and robust organogel coatings for sustainable scale resistance, which may be used for practical application in oil production.  相似文献   
5.
The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp (GM1)) and corresponding glycosphingolipid (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)n+ ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)n- ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)n+/– ions, as well as for deprotonated (S4 + 4Btl)n– ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)n+ ions was observed as a minor pathway. The (S4 + 4Btl)n+ ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)15+ ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein–ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.
Figure
?  相似文献   
6.
A simple, rapid and reliable liquid chromatography–electrospray ionization tandem mass spectrometry method was established and validated for the determination of methotrexate in human plasma. After a straightforward protein precipitation by acetonitrile–water (70:30, v/v), methotrexate (MTX) and p‐aminoacetophenone (used as internal standard, IS) were separated on a Column C18 column (50 × 2.1 mm, 3 µm; Column Technology, Fremont, CA, USA) using a gradient elution with mobile phase of acetonitrile and 0.03% acetic acid aqueous solution at a flow rate of 0.5 mL/min. The total chromatographic runtime was 5 min for each injection. Quantification detection was performed in a triple‐quadruple tandem mass spectrometer under positive mode monitoring the following mass transitions: m/z 455.3 → 308.3 for MTX and m/z 136.1 → 94.4 for IS. The calibration curve was linear over the range of 0.05–25.0 µmol/L with a lower limit of quantification of 0.05 µmol/L. The intra‐ and interday precisions were <5.2%, the accuracy varied from ?4.1 to 4.5%. The recovery was >94%. The LC‐MS/MS method showed an excellent agreement with the existing HPLC‐UV method using Passing–Bablok regression and Bland–Altman difference plot analysis. The validated LC‐MS/MS can be successfully applied to the routine therapeutic drug monitoring of MTX in clinical laboratories. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
Glycopolymers have been widely used to understand the interactions between carbohydrates and lectins, which facilitate the diagnosis and detection of disease and pathogens as well as the development of vaccines. While studies have been focused on the correlation of glycopolymer structure and their binding to lectins, graft‐type glycopolyesters are uncommon. Herein, we report the design and synthesis of mannose‐based graft polyesters by “grafting‐from” method and investigate their interactions with Concanavalin A (Con A). As confirmed by 1H NMR spectroscopy and sulfuric acid‐UV method, graft polyesters with different lengths of mannose graft were successfully synthesized. Our results from turbidimetry binding assay showed that graft polyesters with longer mannose graft exhibit higher initial binding rate (ki). Isothermal titration calorimetry measurements of these graft polyesters with Con A showed that polymers exhibit higher binding affinity (ka) with the number of side chain mannose. This study provides understanding of the interaction between Con A and mannose‐based graft polyesters, which can be employed for the development of glycopolymeric therapeutics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3908–3917  相似文献   
8.
9.
The development of ultrastable carbon materials for potassium storage poses key limitations caused by the huge volume variation and sluggish kinetics. Nitrogen-enriched porous carbons have recently emerged as promising candidates for this application; however, rational control over nitrogen doping is needed to further suppress the long-term capacity fading. Here we propose a strategy based on pyrolysis–etching of a pyridine-coordinated polymer for deliberate manipulation of edge-nitrogen doping and specific spatial distribution in amorphous high-surface-area carbons; the obtained material shows an edge-nitrogen content of up to 9.34 at %, richer N distribution inside the material, and high surface area of 616 m2 g−1 under a cost-effective low-temperature carbonization. The optimized carbon delivers unprecedented K-storage stability over 6000 cycles with negligible capacity decay (252 mA h g−1 after 4 months at 1 A g−1), rarely reported for potassium storage.  相似文献   
10.
The adsorption and dehydrogenation reactions of ethanol over bimetallic clusters, Pt(3)M (M = Pt, Ru, Sn, Re, Rh, and Pd), have been extensively investigated with density functional theory. Both the α-hydrogen and hydroxyl adsorptions on Pt as well as on the alloyed transition metal M sites of PtM were considered as initial reaction steps. The adsorptions of ethanol on Pt and M sites of some PtM via the α-hydrogen were well established. Although the α-hydrogen adsorption on Pt site is weaker than the hydroxyl, the potential energy profiles show that the dehydrogenation via the α-hydrogen path has much lower energy barrier than that via the hydroxyl path. Generally for the α-hydrogen path the adsorption is a rate-determining-step because of rather low dehydrogenation barrier for the α-hydrogen adsorption complex (thermodynamic control), while the hydroxyl path is determined by its dehydrogenation step (kinetic control). The effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation, including adsorption energy, energy barrier, electronic structure, and eventually rate constant were discussed. Among all of the alloyed metals only Sn enhances the rate constant of the dehydrogenation via the α-hydrogen path on the Pt site of Pt(3)Sn as compared with Pt alone, which interprets why the PtSn is the most active to the oxidation of ethanol.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号