首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7693篇
  免费   371篇
  国内免费   55篇
化学   5472篇
晶体学   56篇
力学   189篇
数学   1362篇
物理学   1040篇
  2023年   61篇
  2022年   55篇
  2021年   197篇
  2020年   152篇
  2019年   187篇
  2018年   154篇
  2017年   107篇
  2016年   290篇
  2015年   249篇
  2014年   285篇
  2013年   501篇
  2012年   579篇
  2011年   623篇
  2010年   369篇
  2009年   384篇
  2008年   491篇
  2007年   527篇
  2006年   455篇
  2005年   456篇
  2004年   357篇
  2003年   264篇
  2002年   209篇
  2001年   85篇
  2000年   61篇
  1999年   64篇
  1998年   40篇
  1997年   71篇
  1996年   86篇
  1995年   52篇
  1994年   48篇
  1993年   52篇
  1992年   49篇
  1991年   48篇
  1990年   31篇
  1989年   41篇
  1988年   29篇
  1987年   30篇
  1986年   34篇
  1985年   51篇
  1984年   41篇
  1983年   29篇
  1982年   37篇
  1981年   28篇
  1980年   27篇
  1979年   23篇
  1978年   23篇
  1977年   14篇
  1975年   8篇
  1974年   9篇
  1973年   8篇
排序方式: 共有8119条查询结果,搜索用时 27 毫秒
1.
Different strategies for the preparation of efficient and robust immobilized biocatalysts are here reviewed. Different physico-chemical approaches are discussed.i.- The stabilization of enzyme by any kind of immobilization on pre-existing porous supports.ii.- The stabilization of enzymes by multipoint covalent attachment on support surfaces.iii.- Additional stabilization of immobilized-stabilized enzyme by physical or chemical modification with polymers.These three strategies can be easily developed when enzymes are immobilized in pre-existing porous supports. In addition to that, these immobilized-stabilized derivatives are optimal to develop enzyme reaction engineering and reactor engineering. Stabilizations ranging between 1000 and 100,000 folds regarding diluted soluble enzymes are here reported.  相似文献   
2.
Meccanica - Fiber reinforced materials are used in assorted engineering application and for this reason, new additive manufacturing technologies have been developed for this type of materials. With...  相似文献   
3.
Automatic recognition of visual objects using a deep learning approach has been successfully applied to multiple areas. However, deep learning techniques require a large amount of labeled data, which is usually expensive to obtain. An alternative is to use semi-supervised models, such as co-training, where multiple complementary views are combined using a small amount of labeled data. A simple way to associate views to visual objects is through the application of a degree of rotation or a type of filter. In this work, we propose a co-training model for visual object recognition using deep neural networks by adding layers of self-supervised neural networks as intermediate inputs to the views, where the views are diversified through the cross-entropy regularization of their outputs. Since the model merges the concepts of co-training and self-supervised learning by considering the differentiation of outputs, we called it Differential Self-Supervised Co-Training (DSSCo-Training). This paper presents some experiments using the DSSCo-Training model to well-known image datasets such as MNIST, CIFAR-100, and SVHN. The results indicate that the proposed model is competitive with the state-of-art models and shows an average relative improvement of 5% in accuracy for several datasets, despite its greater simplicity with respect to more recent approaches.  相似文献   
4.
The synthesis of ethyl (2′-hydroxy-4′,5′-methylendioxophenyl)acetate, a fragment of the antihyperglycemic natural coumarin subcoriacin, is reported. We found an expeditious route to the title compound in five steps. Final metal catalyzed acid ethanolysis of the vinylic 1,1-methylthio methylsulfoxide derivative afforded the required aryl acetic ester, but in the absence of metal catalyst, an unexpected Pummerer rearrangement produced the 2,3-dimethylthiofuran derivative as the major product. This last result provides an alternative entry to 2,3-dimethlythiobenzofurans.  相似文献   
5.
Copper(I) complexes (CICs) are of great interest due to their applications as redox mediators and molecular switches. CICs present drastic geometrical change in their excited states, which interferes with their luminescence properties. The photophysical process has been extensively studied by several time-resolved methods to gain an understanding of the dynamics and mechanism of the torsion, which has been explained in terms of a Jahn–Teller effect. Here, we propose an alternative explanation for the photoinduced structural change of CICs, based on electron density redistribution. After photoexcitation of a CIC (S0→S1), a metal-to-ligand charge transfer stabilizes the ligand and destabilizes the metal. A subsequent electron transfer, through an intersystem crossing process, followed by an internal conversion (S1→T2→T1), intensifies the energetic differences between the metal and ligand within the complex. The energy profile of each state is the result of the balance between metal and ligand energy changes. The loss of electrons originates an increase in the attractive potential energy within the copper basin, which is not compensated by the associated reduction of the repulsive atomic potential. To counterbalance the atomic destabilization, the valence shell of the copper center is polarized (defined by ∇2ρ(r) and ∇2Vne(r)) during the deactivation path. This polarization increases the magnitude of the intra-atomic nuclear–electron interactions within the copper atom and provokes the flattening of the structure to obtain the geometry with the maximum interaction between the charge depletions of the metal and the charge concentrations of the ligand.  相似文献   
6.
Overuse and misuse of antibacterial drugs has resulted in bacteria resistance and in an increase in mortality rates due to bacterial infections. Therefore, there is an imperative necessity of new antibacterial drugs. Bio-organometallic derivatives of antibacterial agents offer an opportunity to discover new active antibacterial drugs. These compounds are well-characterized products and, in several examples, their antibacterial activities have been studied. Both inhibition of the antibacterial activity and strong increase in the antibiotic activity of the parent drug have been found. The synthesis of the main classes of bio-organometallic derivatives of these drugs, as well as examples of the use of structure–activity relation (SAR) studies to increase the activity and to understand the mode of action of bio-organometallic antimicrobial peptides (BOAMPs) and platensimicyn bio-organometallic mimics is presented in this article.  相似文献   
7.
A series of nine [Sb7W36O133Ln3M2(OAc)(H2O)8]17? heterometallic anions ( Ln3M2 ; Ln=La–Gd, M=Co; Ln=Ce, M=Ni and Zn) have been obtained by reacting 3 d metal disubstituted Krebs‐type tungstoantimonates(III) with early lanthanides. Their unique tetrameric structure contains a novel {MW9O33} capping unit formed by a planar {MW6O24} fragment to which three {WO2} groups are condensed to form a tungstate skeleton identical to that of a hypothetical trilacunary derivative of the ?‐Keggin cluster. It is shown, for the first time, that classical Anderson–Evans {MW6O24} anions can act as building blocks to construct purely inorganic large frameworks. Unprecedented reactivity in the outer ring of these disk‐shaped species is also revealed. The Ln3M2 anions possess chirality owing to a {Sb4O4} cluster being encapsulated in left‐ or right‐handed orientations. Their ability to self‐associate in blackberry‐type vesicles in solution has been assessed for the Ce3Co2 derivative.  相似文献   
8.
Coordination compounds of copper have been invoked as major actors in processes involving the reduction of molecular oxygen, mostly with the generation of radical species the assignment for which has, so far, not been fully addressed. In the present work, we have carried out studies in solution and on surfaces to gain insights into the nature of the radical oxygen species (ROS) generated by a copper(II) coordination compound containing a thioether clip‐phen derivative, 1,3‐bis(1,10‐phenanthrolin‐2‐yloxy)‐N‐(4‐(methylthio)benzylidene)propan‐2‐amine (2CP‐Bz‐SMe), enabling its adsorption/immobilization to gold surfaces. Whereas surface plasmon resonance (SPR) and electrochemistry of the adsorbed complex indicated the formation of a dimeric CuI intermediate containing molecular oxygen as a bridging ligand, scanning electrochemical microscopy (SECM) and nuclease assays pointed to the generation of a ROS species. Electron paramagnetic resonance (EPR) data reinforced such conclusions, indicating that radical production was dependent on the amount of oxygen and H2O2, thus pointing to a mechanism involving a Fenton‐like reaction that results in the production of OH..  相似文献   
9.
Two flavonoid glycosides derived from rhamnopyranoside ( 1 ) and arabinofuranoside ( 2 ) have been isolated from leaves of Persea caerulea for the first time. The structures of 1 and 2 have been established by 1H NMR, 13C NMR, and IR spectroscopy, together with LC–ESI–TOF and LC–ESI–IT MS spectrometry. From the MS and MS/MS data, the molecular weights of the intact molecules as well as those of quercetin and kaempferol together with their sugar moieties were deduced. The NMR data provided information on the identity of the compounds, as well as the α and β configurations and the position of the glycosides on quercetin and kaempferol. We have also explored the application of sodium dodecyl sulfate (SDS) normal micelles in binary aqueous solution, at a range of concentrations, to the diffusion resolution of these two glycosides, by the application of matrix‐assisted diffusion ordered spectroscopy (DOSY) and pulse field gradient spin echo (PGSE) methodologies, showing that SDS micelles offer a significant resolution which can, in part, be rationalized in terms of differing degrees of hydrophobicity, amphiphilicity, and steric effects. In addition, intra‐residue and inter‐residue proton–proton distances using nuclear Overhauser effect build‐up curves were used to elucidate the conformational preferences of these two flavonoid glycosides when interacting with the micelles. By the combination of both diffusion and nuclear Overhauser spectroscopy techniques, the average location site of kaempferol and quercetin glycosides has been postulated, with the former exhibiting a clear insertion into the interior of the SDS‐micelle, whereas the latter is placed closer to the surface. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
10.
Novel biomaterials are needed for bone tissue repair with improved mechanical performance compared to classical bioceramics. The objective of this work was to characterize a hybrid filler material, which is capable to coat as a thin film porous scaffolds improving their mechanical properties for bone tissue engineering. The hybrid filler material is a blend of chitosan and silica network formed through in situ sol–gel using tetraethylortosilicate and 3‐glycidoxypropyltrimethoxysilane (GPTMS) as silica precursors. The hypothesis was that the epoxy ring of GPTMS could react with the amino groups of chitosan in acidic media while it is also reacting the siloxane groups of hydrolyzed silica precursors. The formation of the hybrid organic–inorganic network was assessed by different physical techniques revealing changes in molecular mobility and hydrophilicity upon chemical reaction. Finally, the cytotoxicity of the samples was also evaluated by MTT assay. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1391–1400  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号