首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymes are versatile biocatalysts and find increasing applications in many areas. The major advantages of using enzymes in biocatalytic transformations are their chemo‐, regio‐, and stereospecificity, as well as the mild reaction conditions that can be used. However, even when an enzyme is identified as being useful for a given reaction, its application is often hampered by its lack of long‐term stability under process conditions, and also by difficulties in recovery and recycling. For ease of application and stabilization purposes, enzymes are often immobilized on solid supports. Among support matrices, hydrophobic biomaterials have been extensively used as supports for enzyme immobilization because the hydrophobic interactions not only can effectively increase the amount of enzyme immobilization, but also exhibit higher activity and retention of activity compared with hydrophilic supports. On the other hand, polysiloxane can evidently increase the amount of enzyme immobilization because of its hydrophobicity and strong affinity with enzyme. Therefore, this research details the first preparation and use of a hydrophobic polysiloxane support for enzyme immobilization in which the structural and functional characteristics of new supports have been investigated by using glucose oxidase (GOD) and a simple Fenton's assay method, and extremely interesting features were revealed. The results showed that the amount of GOD immobilization and the stability of GOD loaded, which are fundamental properties for enzyme separation and purification, can be significantly improved by adsorption. Moreover, the results indicated that hydrophobic polysiloxane supports can effectively increase the enzymatic affinity and durability of GOD, and decrease the rate of GOD desorbed.

  相似文献   


2.
The covalent immobilization of glucoamylase on new epoxide-, isocyanate-, acid chloride-, and carboxylic acid-activated plastic supports shows the viability of such supports for immobilizing enzymes (especially those reacting with 1,6-diaminohexane and glutaraldehyde) for producing side arms. The operational stability of immobilized glucoamylase could be extended by crosslinking the enzyme, by increasing the substrate concentration, or by extending the support’s side arm. The pH curves for the immobilized enzyme were in general not found to be shifted from the pH optimum of the soluble enzyme. However, the immobilized enzyme’s temperature activity profiles were shifted to a lower temperature range when compared to the soluble enzyme. The immobilized glucoamylase Michaelis constants increased, and the maximum rates and specific activities decreased with respect to the soluble enzyme kinetic parameters.  相似文献   

3.
Glucoamylase was immobilized onto novel porous polymer supports. The properties of immobilized glucoamylase and the relationship between the activity of immobilized enzyme and the properties of porous polymer supports were investigated. Compared with the native enzyme, the temperature profile of immobilized glucoamylase was widened, and the optimum pH was also changed. The optimum substrate concentration of immobilized glucoamylase was higher than that of native enzyme. After storage for 23 d, the immobilized glucoamylase still maintained about 84% of its initial activity, whereas the native enzyme only maintained about 58% of the initial activity. Moreover, after using repeatedly seven times, the immobilized enzyme maintained about 85% of its initial activity. Furthermore, the properties of porous polymer supports had an effect on the activity of the immobilized glucoamylase.  相似文献   

4.
We present a novel type of nanoreactor suitable for the immobilization of enzymes. The particles used consist of a polystyrene core onto which long chains of poly(acrylic acid) are grafted ("spherical polyelectrolyte brush"). Proteins adsorbed spontaneously onto these particles from aqueous solutions if the ionic strength is low. We immobilized glucoamylase on these particles and showed that this enzyme keeps nearly its full activity. This is shown by analyzing the enzymatic activity in terms of the Michaelis-Menten kinetics. No leaching out of the enzyme takes place during the reaction and the colloidal stability is not impeded by the adsorbed biomolecules. The data presented here suggest that the principle of immobilizing enzymes on these particles may be of general use.The Figure shows a schematic representation of the colloidal nanoreactors.  相似文献   

5.
Carboxypeptidase A immobilized on acid chloride of oxidized cellulose showed the following features: (a) as indicated by the linearity of reaction kinetics, the immobilized enzyme action is not diffusion controlled; (b) greater flow rates are achievable with less clogging during continual usage since the enzyme is attached to a porous screen; (c) ease of handling; and (d) no apparent electrostatic interaction with the support material that is uncharged. The immobilized enzyme retained 60% of the original activity. The half-life of free enzyme was only 20 min, whereas for immobilized enzyme it was enhanced up to 2 h 48 min. It could be recovered and repeatedly used.  相似文献   

6.
金属有机骨架(MOF)材料由于其孔隙率高、比表面积大以及具有发达的内联通孔道结构等优点,可以作为优良的生物分子固定化载体。通过表面活性自组装策略制备了铈基介孔MOF(Ce-MOF-F),表征结果表明,该材料有大的比表面积和呈辐射状的介孔孔道结构。以其为载体、南极假丝酵母脂肪酶B(CALB)为模型酶,通过物理吸附法制备了生物催化剂CALB@Ce-MOF-F,对该固定化酶的酶载量和催化性能进行了研究。在优化条件下,CALB的负载量为162.0mg/g载体,水解活性为899.1U/g蛋白。与游离CALB相比,CALB@Ce-MOF-F表现出对高温、酸碱和有机溶剂等有更强的耐受性;将Ce-MOF-F用于多种酶的固定化,研究其作为载体的普适性,结果表明,介孔Ce-MOF-F对洋葱伯克氏菌脂肪酶(BCL)和漆酶有良好的固定效果,可以作为良好载体,并能对酶起到较好的保护作用。  相似文献   

7.
To be used successfully in continuous reactor systems, enzymes must either be retained using filtration membranes or immobilized on a solid component of the reactor. Whereas the first approach requires large amounts of energy, the second approach is limited by the low temporal stability of enzymes under operational conditions. To circumvent these major stumbling blocks, we have developed a strategy that enables the reversible supramolecular immobilization of bioactive enzyme–polymer conjugates at the surface of filtration membranes. The polymer is produced through a reversible addition–fragmentation transfer method; it contains multiple adamantyl moieties that are used to bind the resulting conjugate at the surface of the membrane which has surface‐immobilized cyclodextrin macrocycles. This supramolecular modification is stable under operational conditions and allows for efficient biocatalysis, and can be reversed by competitive host–guest interactions.  相似文献   

8.
Enzymes exhibit high selectivity and reactivity under normal conditions but are sensitive to denaturation or inactivation by pH and temperature extremes, organic solvents, and detergents. To extend the use of these biocatalysts for practical applications, the technology of immobilization of enzymes on suitable supports was developed. Recently, these immobilized biomolecules have been widely used and a variety of immobilization supports have been studied. The majority of these supports cover diverse kinds of materials such as natural or synthetic polyhydroxylic matrives, porous in organic carriers, and all kinds of functional polymers. Microporous molecular sieve, zeolite, has attracted extensive interest in research because of its distinctive physical properties and geochemistry. Recently, with the discovery of a new family of mesoporous molecular sieves, MCM-41, this series of materials shows great potential for various applications. Molecular sieves involve such a series of materials that can discriminate between molecules, particularly on the basis of size. As support materials, they offer interesting properties, such as high surface areas, hydrophobic or hydrophilic behavior, and electrostatic interaction, as well as mechanical and chemical resistance, making them attractive for enzyme immobilization. In this article, different types of molecular sieves used in different immobilization methods including physical adsorption on zeolite, entrapment in mesoporous and macroporous MCM series, as well as chemically covalent binding to functionalized molecular sieves are reviewed. Key factors affecting the application of this biotechnology are discussed systematically, and immobilization mechanisms combined with newly developed techniques to elucidate the interactions between matrixes and enzyme molecules are also introduced.  相似文献   

9.
载体材料的选择对固定化酶的性能有着至关重要的影响。纳米复合材料不仅具有纳米尺寸的特性,而且可以克服单一材料的不足,在固定化酶领域引起了广泛关注。本文就目前在固定化酶领域使用的纳米复合载体分类进行了系统的阐述,重点介绍了目前在固定化酶研究领域运用较为广泛的硅基纳米复合材料、碳基纳米复合材料和纳米纤维复合材料等材料的制备方法及不同材料对酶学性能的影响,并对这些纳米复合材料固定化酶发展前景进行了展望。  相似文献   

10.
Methacrylic acid first was neutralized with an aqueous solution of NaOH to pH=6.0~7.0, vinylene carbonate(VCA) was added to the solution, then monomers were copolymerized in paraffin oil by means of reverse-phase suspensionpolymerization and hydrophilic copolymeric supports were prepared. The properties of the supports were determined usingtrypsin and results show that the amount of enzymes coupled to the supports and the specific activity of immobilized trypsinare related to the content of VCA structure units, reaction time and concentration of enzyme solution, etc.  相似文献   

11.
将聚碳酸乙烯撑酯(PVCA)与α,ω-双端氨基聚乙二醇(H2N-PEG-NH2)溶于DMF,于液蜡中进行交联反应制得亲水性固定化酶载体,将其与胰蛋白酶进行偶联反应制备了固定化胰蛋白酶.酶蛋白的比活力及其于载体上的结合量与反应条件有关,当w(PVCA)/w(H2N-PEG-NH2)为0.5时,二者均处于最高值.此固定化酶酶促反应的最适pH值和Km值均较之溶液酶有显著提高,但二者的最适酶促反应温度却相当一致.  相似文献   

12.
载体材料的选择对固定化酶的性能有着至关重要的影响。纳米复合材料不仅具有纳米尺寸的特性,而且可以克服单一材料的不足,在固定化酶领域引起了广泛关注。本文就目前在固定化酶领域使用的纳米复合载体分类进行了系统的阐述,重点介绍了目前在固定化酶研究领域运用较为广泛的硅基纳米复合材料、碳基纳米复合材料和纳米纤维复合材料等材料的制备方法及不同材料对酶学性能的影响,并对这些纳米复合材料固定化酶发展前景进行了展望。  相似文献   

13.
纳米花型酶-无机杂化固定化酶研究进展   总被引:1,自引:0,他引:1  
冯慧  韩娟  黄文睿  吴嘉聪  李媛媛  王蕾  王赟 《化学通报》2021,84(12):1263-1273
酶是一种绿色高效的生物催化剂,被广泛地应用于工业生产中,为了更好的提升游离酶的性能,酶固定化技术应运而生。然而,与游离酶相比,固定化酶活性下降以及传质受限一直是酶固定化技术亟待解决的关键问题。作为一种新型酶固定化技术,纳米花型酶-无机杂化固定化酶因具有高比表面积、高酶活性和高催化效率,且制备简单,绿色无污染受到广泛关注。本文综述了近年来纳米花型酶-无机杂化固定化酶的研究进展,根据纳米花型酶-无机杂化固定化酶的形成特点,将其分为单酶纳米花、双酶纳米花和负载型纳米花。阐述了纳米花型酶-无机杂化固定化酶的制备过程和形成机理并对纳米花型酶-无机杂化固定化酶在食品工业和检测领域的应用进展做出总结。最后,对纳米花型酶-无机杂化固定化酶的发展前景做出展望。  相似文献   

14.
固定化酶反应器作为蛋白质组学研究中"bottom-up"策略重要的组件,具有酶解快速、酶解效率高、酶稳定性和活性高、简单易操作、能够与多种检测方式联用等优点,对于发展高效快速的蛋白质组学分析方法具有重要意义。本文就固定化酶反应器的制备方法及其在蛋白质组学中的应用做简单的概述,着重介绍酶的固定方法、固定化酶的载体、用于固定的酶的种类。近几年固定化酶反应器的研究集中于提高固酶量、保持酶活性、增加酶解效率、减小非特异性吸附等方面。研究结果表明,采用纳米材料、整体材料等新型载体,提高载体亲水性,采用多酶同时酶解等方法能够有效改善固定化酶反应器的性能,提高蛋白质的鉴定效率。  相似文献   

15.
Xylanases have important applications in industry. Immobilization and stabilization of enzymes may allow their reuse in many cycles of the reaction, decreasing the process costs. This work proposes the use of a rational approach to obtain immobilized commercial xylanase biocatalysts with optimized features. Xylanase NS50014 from Novozymes was characterized and immobilized on glyoxyl-agarose, agarose-glutaraldehyde, and agarose-amino-epoxy support and on differently activated chitosan supports: glutaraldehyde-chitosan, glyoxyl-chitosan, and epoxy-chitosan. Two different chitosan matrices were tested. The best chitosan derivative was epoxy-chitosan-xylanase, which presented 100% of immobilization yield and 64% of recovered activity. No significant increase on the thermal stability was observed for all the chitosan-enzyme derivatives. Immobilization on glyoxyl-agarose showed low yield immobilization and stabilization degrees of the obtained derivative. The low concentration of lysine groups in the enzyme molecule could explain these poor results. The protein was then chemically modified with ethylenediamine and immobilized on glyoxyl-agarose. The new enzyme derivatives were 40-fold more stable than the soluble, aminated, and dialyzed enzyme (70 °C, pH 7), with 100% of immobilization yield. Therefore, the increase of the number of amine groups in the enzyme surface was confirmed to be a good strategy to improve the properties of immobilized xylanase.  相似文献   

16.
The literature and our experimental data on the effect of chemical modification and immobilization on the thermostability of enzymes are analyzed. The effect of various factors causing changes in the stability of enzymes after their modification or immobilization is demonstrated. It is shown that changes in the temperature dependence of the inactivation rate constant are associated with the change in the effective values of thermodynamic activation parameters for the inactivation processes. An increase in the activation energy of thermoinactivation, Ea, leads to the stabilization of a modified or immobilized enzyme at temperatures below the iso-kinetic temperature (“low-temperature” stabilization) and a decrease inE a entails a “high-temperature” stabilization of enzymes. It is shown that with immobilized enzymes the high-temperature stabilization is invariably observed.  相似文献   

17.
This paper aims to investigate the effects of some salts (NaCl, (NH4)2SO4 and Na2SO4) at pH 5.0, 7.0 and 9.0 on the stability of 13 different immobilized enzymes: five lipases, three proteases, two glycosidases, and one laccase, penicillin G acylase and catalase. The enzymes were immobilized to prevent their aggregation. Lipases were immobilized via interfacial activation on octyl agarose or on glutaraldehyde-amino agarose beads, proteases on glyoxyl agarose or glutaraldehyde-amino agarose beads. The use of high concentrations of salts usually has some effects on enzyme stability, but the intensity and nature of these effects depends on the inactivation pH, nature and concentration of the salt, enzyme and immobilization protocol. The same salt can be a stabilizing or a destabilizing agent for a specific enzyme depending on its concentration, inactivation pH and immobilization protocol. Using lipases, (NH4)2SO4 generally permits the highest stabilities (although this is not a universal rule), but using the other enzymes this salt is in many instances a destabilizing agent. At pH 9.0, it is more likely to find a salt destabilizing effect than at pH 7.0. Results confirm the difficulty of foreseeing the effect of high concentrations of salts in a specific immobilized enzyme.  相似文献   

18.
We report the first application of hydrophobic interaction between graphene oxide (GO) and negatively charged enzymes to fabricate CE-integrated immobilized enzyme microreactors (IMERs) by a simple and reliable immobilization procedure based on layer by layer assembly. L -lactate dehydrogenase (L -LDH), which is negatively charged during the enzymatic reaction, is selected as the model enzyme. Various spectroscopic techniques, including SEM, FTIR, and UV-vis are used to characterize the fabricated CE-IMERs, demonstrating the successful immobilization of enzymes on the negatively charged GO layer in the capillary surface. The IMER exhibits excellent repeatability with RSDs of inter-day and batch-to-batch less than 3.49 and 6.37%, respectively, and the activity of immobilized enzymes remains about 90% after five-day usage. The measured Km values of pyruvate and NADH of the immobilized L -LDH are in good agreement with those obtained by free enzymes. The results demonstrate that the hydrophobic interactions and/or π-π stacking is significant between the GO backbone and the aromatic residues of L -LDH and favorable to fabrication of CE-integrated IMERs. Finally, the method is successfully applied to the determination of pyruvate in beer samples.  相似文献   

19.
Novel synthetic techniques are used for the encapsulation of the enzymes oxalate oxidase and peroxidase in stable, optically transparent porous silica glass matrices. The large enzymes are fully immobilized in the porous glass but small molecules such as oxalate ions pass readily through the pores in the glass. The enzymes catalyze the reactions leading to the formation of a colored dye product. Upon exposure of the doped glass to oxalate solutions, a colored glass is formed. The absorption spectrum of the colored product and the changes of absorbance with time are measured within the glass matrix. The sensitivity and the time-dependence of the response are discussed.  相似文献   

20.
The enzymes oxalate oxidase and peroxidase are encapsulated in stable, optically transparent, porous silica glass matrices synthesized under mild conditions using novel sol-gel synthetic techniques. The large enzymes are immobilized, but smaller molecules such as oxalate ions pass readily through the porous glass. Upon exposure to oxalate solutions, a colored glass is formed whose absorption spectrum and changes of absorbance with time are measured. The sensitivity of the response and the time-dependence of the response are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号