首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   21篇
  国内免费   4篇
化学   251篇
晶体学   3篇
力学   52篇
数学   38篇
物理学   81篇
  2023年   5篇
  2022年   12篇
  2021年   19篇
  2020年   27篇
  2019年   33篇
  2018年   33篇
  2017年   27篇
  2016年   19篇
  2015年   17篇
  2014年   30篇
  2013年   35篇
  2012年   45篇
  2011年   40篇
  2010年   21篇
  2009年   14篇
  2008年   12篇
  2007年   15篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  1996年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有425条查询结果,搜索用时 31 毫秒
1.

In the present research, magnesium aluminate spinel was prepared as catalyst support using a novel, facile, and efficient mechanochemical method. The Co-promoted catalysts with 20 wt.% of Ni were fabricated using an impregnation route and the samples were analyzed by the X-ray diffraction (XRD), N2 adsorption/desorption (BET), temperature-programmed reduction and desorption (H2-TPR and O2-TPD), and field emission scanning electron microscopy (FESEM) tests. The results confirmed that all samples have a mesoporous structure with a high specific surface area and the presence of cobalt caused complete CH4 oxidation at low temperatures, and no side reactions were observed. The results indicated that the 3%Co-20%Ni/MgAl2O4 catalyst was the optimal sample among the prepared catalysts, owing to the improvement of reduction features and oxygen mobility. The 50 and 90% of methane conversion was obtained at 530 and 600 °C, respectively. Also, the influence of calcination temperature, GHSV, and feed ratio was determined on the catalytic activity. The obtained outcomes revealed that the calcination temperature has a significant effect on the textural properties and catalytic efficiency. The sample calcined at 700 °C showed the weakest performance, which was related to the sintering of particles at high temperatures. The catalytic stability showed that the 3%Co-20%Ni/MgAl2O4 has acceptable stability during 600 min time of reaction.

Graphical abstract
  相似文献   
2.

One of the main concerns during the COVID-19 pandemic was the protection of healthcare workers against the novel coronavirus. The critical role and vulnerability of healthcare workers during the COVID-19 pandemic leads us to derive a mathematical model to express the spread of coronavirus between the healthcare workers. In the first step, the SECIRH model is introduced, and then the mathematical equations are written. The proposed model includes eight state variables, i.e., Susceptible, Exposed, Carrier, Infected, Hospitalized, ICU admitted, Dead, and finally Recovered. In this model, the vaccination, protective equipment, and recruitment policy are considered as preventive actions. The formal confirmed data provided by the Iranian ministry of health is used to simulate the proposed model. The simulation results revealed that the proposed model has a high degree of consistency with the actual COVID-19 daily statistics. In addition, the roles of vaccination, protective equipment, and recruitment policy for the elimination of coronavirus among the healthcare workers are investigated. The results of this research help the policymakers to adopt the best decisions against the spread of coronavirus among healthcare workers.

  相似文献   
3.
During the last two decades, with the development of nanotechnology, various nanomaterials have been designed and generated. Among them, hybrid organic–inorganic nanoparticles as a particular immobilizing carrier of the catalyst active sites have shown an important contribution in the current research studies. This is due to the large area and loads of active sites. This prominent review is focused on the novel various exa about the immobilization of nanoparticles with organic compounds as versatile and efficient catalysts in organic syntheses.  相似文献   
4.
Amphipathic agents are widely used in various fields including biomedical sciences. Micelle-forming detergents are particularly useful for in vitro membrane-protein characterization. As many conventional detergents are limited in their ability to stabilize membrane proteins, it is necessary to develop novel detergents to facilitate membrane-protein research. In the current study, we developed novel trimaltoside detergents with an alkyl pendant-bearing terphenyl unit as a hydrophobic group, designated terphenyl-cored maltosides (TPMs). We found that the geometry of the detergent hydrophobic group substantially impacts detergent self-assembly behavior, as well as detergent efficacy for membrane-protein stabilization. TPM-Vs, with a bent terphenyl group, were superior to the linear counterparts (TPM-Ls) at stabilizing multiple membrane proteins. The favorable protein stabilization efficacy of these bent TPMs is likely associated with a binding mode with membrane proteins distinct from conventional detergents and facial amphiphiles. When compared to n-dodecyl-β-d -maltoside (DDM), most TPMs were superior or comparable to this gold standard detergent at stabilizing membrane proteins. Notably, TPM-L3 was particularly effective at stabilizing the human β2 adrenergic receptor (β2AR), a G-protein coupled receptor, and its complex with Gs protein. Thus, the current study not only provides novel detergent tools that are useful for membrane-protein study, but also suggests a critical role for detergent hydrophobic group geometry in governing detergent efficacy.  相似文献   
5.
Journal of Thermal Analysis and Calorimetry - Thermal microscale gas flow was simulated into a coplanar microchannel was simulated at a broad range of Knudsen numbers. Attempts were made to improve...  相似文献   
6.
This study reports the synthesis of sulfonamide-derived Schiff bases as ligands L 1 and L 2 as well as their transition metal complexes [VO(IV), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)]. The Schiff bases (4-{E-[(2-hydroxy-3-methoxyphenyl)methylidene]amino}benzene-1-sulfonamide ( L 1 ) and 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzene-1-sulfonamide ( L 2 ) were synthesized by the condensation reaction of 4-aminobenzene-1-sulfonamide and 4-amino-N-(3-methyl-2,3-dihydro-1,2-oxazol-5-yl)benzene-1-sulfonamide with 2-hydroxy-3-methoxybenzaldehyde in an equimolar ratio. Sulfonamide core ligands behaved as bidentate ligands and coordinated with transition metals via nitrogen of azomethine and the oxygen of the hydroxyl group. Ligand L 1 was recovered in its crystalline form and was analyzed by single-crystal X-ray diffraction technique which held monoclinic crystal system with space group (P21/c). The structures of the ligands L 1 and L 2 and their transition metal complexes were established by their physical (melting point, color, yields, solubility, magnetic susceptibility, and conductance measurements), spectral (UV–visible [UV–Vis], Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and mass analysis), and analytical (CHN analysis) techniques. Furthermore, computational analysis (vibrational bands, frontier molecular orbitals (FMOs), and natural bonding orbitals [NBOs]) were performed for ligands through density functional theory utilizing B3LYP/6-311+G(d,p) level and UV–Vis analysis was carried out by time-dependent density functional theory. Theoretical spectroscopic data were in line with the experimental spectroscopic data. NBO analysis confirmed the extraordinary stability of the ligands in their conjugative interactions. Global reactivity parameters computed from the FMO energies indicated the ligands were bioactive by nature. These procedures ensured the charge transfer phenomenon for the ligands and reasonable relevance was established with experimental results. The synthesized compounds were screened for antimicrobial activities against bacterial (Streptococcus aureus, Bacillus subtilis, Eshcheria coli, and Klebsiella pneomoniae) species and fungal (Aspergillus niger and Aspergillus flavous) strains. A further assay was designed for screening of their antioxidant activities (2,2-diphenyl-1-picrylhydrazine radical scavenging activity, total phenolic contents, and total iron reducing power) and enzyme inhibition properties (amylase, protease, acetylcholinesterase, and butyrylcholinesterase). The substantial results of these activities proved the ligands and their transition metal complexes to be bioactive in their nature.  相似文献   
7.
The electronic (energy gap and work function) as well as electrical properties (dipole moment, polarizability, and first hyperpolarizabilities) of the first-row transition metals decorated C24N24 cavernous nitride fullerene were explored using DFT calculations. The transition metals are decorated at N4 cavity of C24N24 fullerene. According to our spin polarized computations, the most stable spin state monotonically increases to sextet for Mn@C24N24 and thereafter dropped off gradually to singlet state for Zn@C24N24 system. The findings demonstrate that transition metals can remarkably decrease the HOMO-LUMO energy gap and work function values up to 63% and 21% of bare C24N24, respectively. As can be seen, when the Sc and Ti metals are located above the N4 cavity of fullerene, systems of enhanced static hyperpolarizabilities (β0) are delivered. These findings might provide an effective strategy to design high performance eletcro-optical materials based on carbon- nitride fullerene.  相似文献   
8.
A unique trend in the binding affinity between cationic metal−organic cages (MOCs) and external counteranions in aqueous media was observed. Similar to many macroions, two MOCs, sharing similar structures but carrying different number of charges, self-assembled into hollow spherical single-layered blackberry-type structures through counterion-mediated attraction. Dynamic and static light scattering and isothermal titration calorimetry measurements confirm the stronger interactions among less charged MOCs and counteranions than that of highly charged MOCs, leading to larger assembly sizes. DOSY NMR measurements suggest the significance of thick hydration shells of highly charged MOCs, inhibiting the MOC-counterion binding and weakening the interaction between them. This study demonstrates that the greater role played by hydration shell on ion-pair formation comparing with charge density of MOCs.  相似文献   
9.
A palladium–fibroin complex (Pd/Fib.) was prepared by the addition of sonicated fibroin fiber in water to palladium acetate solution. Pd (OAc)2 was absorbed by fibroin and reduced with NaBH4 at room temperature to the Pd(0) nanoparticles. Powder‐X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis and inductively coupled plasma‐atomic emission spectroscopy were carried out to characterize the Pd/Fib. catalyst. Catalytic activity of this finely dispersed palladium was examined in the Heck coupling reaction. The catalytic coupling of aryl halides (‐Cl, ‐Br, ‐I) and olefins led to the formation of the corresponding coupled products in moderate to high yields under air atmosphere. A variety of substrates, including electron‐rich and electron‐poor aryl halides, were converted smoothly to the targeted products in simple procedure. Heterogeneous supported Pd catalyst can be recycled and reused several times.  相似文献   
10.
Research on Chemical Intermediates - We have synthesized silver nanoparticles (Ag-NPs) via a simple and eco-friendly method through the utilization of aqueous aerial parts of Salvia leriifolia...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号