首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
力学   4篇
数学   1篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
石建飞  苟向锋  朱凌云 《力学学报》2019,51(5):1489-1499
通过将系统参数定义为参数变量, 构成参数空间,研究齿轮传动系统在参数空间和状态空间耦合下的非线性全局动力学特性,以及多参数、多初值和多稳态行为之间的关联特性.首先设计了一个两空间耦合下非线性系统多稳态行为的计算和辨识方法.其次,基于该方法并结合相图、Poincaré映射图、分岔图、最大Lyapunov指数、吸引域等,研究齿轮传动系统在不同参数平面上多稳态行为的存在区域和分布特性,以及多稳态行为在状态平面上的分布特性,揭示了参数平面和状态平面上系统可能隐藏的多稳态行为和分岔,并分析了多稳态行为的形成机理. 结果发现,两空间耦合下系统在参数平面上存在大量多稳态行为并呈"带状"分布, 状态平面上多稳态行为出现两种不同的侵蚀现象, 即内部侵蚀和边界侵蚀.分岔点或分岔曲线对初值的敏感性导致多稳态行为的出现.当齿侧间隙和误差波动在较小的范围内变化时,系统全局动力学特性受间隙和误差扰动的影响较小,受啮合频率的影响较大.两空间耦合下系统全局动力学特性变得丰富和复杂.   相似文献   
2.
将单参数最大Lyapunov指数的计算推广到双参数平面上,数值计算Duffing系统在双参数平面上的最大Lyapunov指数,得到系统在参数平面上周期运动、混沌运动、各种分岔曲线的参数区域;结合系统单参数分岔图、相图、庞加莱截面图讨论了系统在参数平面上的分岔混沌过程以及阻尼系数对系统双参数特性的影响。结果表明:在双参数平面上系统出现了周期跳跃、周期倍化分岔、叉式分岔等复杂的分岔曲线,而且这些分岔曲线随阻尼系数的增加不断发生着复杂变化;得到系统在以往单参数分岔过程中很少出现的分岔曲线相交、嵌套、演变等特殊现象;阻尼系数对系统双参数耦合动力学特性有重要的影响。本文对工程中其它多参数系统的参数耦合特性的研究具有一定的参考价值。  相似文献   
3.
给出了参数空间上最大Lyapunov指数的计算方法,数值计算了Duffing系统在双参数平面上的最大Lyapunov指数.结合单参数最大Lyapunov指数、分岔图、相图以及时间历程图,讨论了Duffing系统在双参数平面上的分岔以及随系统控制参数变化的分岔演化过程.结果发现在双参数平面上系统发生叉式分岔,出现具有缺边现象的两个不同区域,该区域内系统对初值有较强的敏感性,存在两吸引子共存现象;系统运动经过周期跳跃曲线时振动幅值突然减小;系统外激励频率较小时常引起颤振运动.此外,在两个具有缺边现象的区域内,随刚度系数的不断增加,系统出现了倍周期分岔曲线环,而且倍周期分岔曲线环内不断嵌套新的倍周期分岔曲线环,导致系统最终经倍周期分岔序列进入混沌状态,随着控制参数的变化,系统在双参数平面上的动力学特性变得非常复杂.  相似文献   
4.
齿轮副中的齿距偏差等短周期误差使系统出现复杂的周期运动, 影响齿轮传动的平稳性. 将该类复杂周期运动定义为近周期运动, 采用多时间尺度Poincaré映射截面对其进行辨识. 为研究齿轮副的近周期运动, 引入含齿距偏差的直齿轮副非线性动力学模型, 并计入齿侧间隙与时变重合度等参数. 采用变步长4阶Runge-Kutta法数值求解动力学方程, 由所提出的辨识方法分析不同参数影响下系统的近周期运动. 根据改进胞映射法计算系统的吸引域, 结合多初值分岔图、吸引域图与分岔树状图等研究了系统随扭矩与啮合频率变化的多稳态近周期运动. 研究结果表明, 齿轮副中的短周期误差导致系统的周期运动变复杂, 在微观时间尺度内, 系统的Poincaré映射点数呈现为点簇形式, 系统的点簇数与实际运动周期数为宏观时间尺度的Poincaré映射点数. 短周期误差导致系统在微观时间尺度内的吸引子数量增多, 使系统运动转迁过程变复杂. 合理的参数范围及初值范围可提高齿轮传动的平稳性. 该辨识与分析方法可为非线性系统中的近周期运动研究奠定理论基础.   相似文献   
5.
通过将系统参数定义为参数变量,构成参数空间,研究齿轮传动系统在参数空间和状态空间耦合下的非线性全局动力学特性,以及多参数、多初值和多稳态行为之间的关联特性.首先设计了一个两空间耦合下非线性系统多稳态行为的计算和辨识方法.其次,基于该方法并结合相图、Poincaré映射图、分岔图、最大Lyapunov指数、吸引域等,研究齿轮传动系统在不同参数平面上多稳态行为的存在区域和分布特性,以及多稳态行为在状态平面上的分布特性,揭示了参数平面和状态平面上系统可能隐藏的多稳态行为和分岔,并分析了多稳态行为的形成机理.结果发现,两空间耦合下系统在参数平面上存在大量多稳态行为并呈"带状"分布,状态平面上多稳态行为出现两种不同的侵蚀现象,即内部侵蚀和边界侵蚀.分岔点或分岔曲线对初值的敏感性导致多稳态行为的出现.当齿侧间隙和误差波动在较小的范围内变化时,系统全局动力学特性受间隙和误差扰动的影响较小,受啮合频率的影响较大.两空间耦合下系统全局动力学特性变得丰富和复杂.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号