首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   4篇
  国内免费   1篇
化学   3篇
晶体学   5篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2005年   1篇
排序方式: 共有8条查询结果,搜索用时 406 毫秒
1
1.
以经典热力学第二定律ΔG<0为依据,分析了静态高温高压触媒法合成立方氮化硼(cBN)过程中发生的可能反应.考虑温度和压强对反应物相体积的影响,计算了六方氮化硼(Li3N-hBN)体系中hBN+Li3N→Li3BN2,h BN→cBN及Li3BN2→Li3N+cBN反应在高温高压条件下的ΔG.结果证实,Li3BN2由Li3N与hBN在高温高压(T>1300 K,P>3.0 GPa)条件下反应得到,在cBN的合成(T=1600~1800 K,P=4.6~6.0 GPa)条件下,hBN和Li3BN2都有向cBN转化的倾向,但由hBN向cBN直接转变的反应自由能比Li3BN2分解生成cBN的反应自由能更负,反应的可能性更大.探讨了高温高压条件下立方氮化硼的转变机理。  相似文献   
2.
以Li3N为触媒、六方氮化硼(hBN)为原料,采用静态高温高压法合成立方氮化硼(cBN)单晶.为探讨cBN合成机理,利用扫描电镜观察了cBN单晶生长界面层形貌,利用俄歇电子能谱和X射线光电子能谱对界面层精细结构进行了表征.结果表明,cBN单晶被合成后的触媒粉末所包裹,界面层中B、N元素相对比例基本保持不变,且随着距离cBN单晶越来越近,B、N元素的sp2杂化态逐渐减少,sp3杂化态逐渐增多,这说明hBN含量逐渐减少,而cBN含量逐渐增多.由于Li元素非常活泼,在高温高压体系中的电子结构极不稳定,故可以作为电子转移的桥梁,完成电子由N向B的转移.据此认为在cBN单晶生长界面层中,B、N元素的sp2杂化态逐渐转变成了sp3杂化态.以上结果说明hBN在触媒催化作用下可直接转变为cBN.  相似文献   
3.
在Ni-Co-P化学镀液中添加硝酸铈,研究硝酸铈对Ni-Co-P镀层组织结构和性能的影响。利用扫描电子显微镜、X射线衍射仪、电化学工作站和显微硬度计,与常规化学镀层进行比较,观察和分析了硝酸铈对化学镀Ni-Co-P镀速、镀层形貌、结构、硬度和耐蚀性的影响。实验结果表明:采用添加硝酸铈的镀液施镀后,获得的Ni-Co-P镀层均匀致密,耐蚀性提高。镀层XRD衍射出现尖锐状衍射峰,呈微晶衍射特征。500℃热处理后,Ni-Co-P合金镀层完全转变成晶态,产生硬化相Ni3P。500℃热处理后,镀层硬度明显提高。  相似文献   
4.
采用Li3N和hBN为原料,在静态高温高压条件下合成出大颗粒cBN单晶.利用扫描电镜(SEM)、高分辨透射电镜(HRTEM)对合成块断面、大颗粒cBN单晶形貌及其周围物相进行了表征.结果表明:在大颗粒cBN单晶周围主要存在hBN、cBN及Li3BN2等物相.HRTEM在大颗粒单晶周围发现了纳米尺寸的cBN微颗粒,并发现该微颗粒处在Li3BN2物相包裹中.由此可以推测,高温高压状态下,hBN与Li3N发生共熔反应生成Li3BN2,而Li3BN2作为触媒中间相促使cBN的形成.同时结合SEM结果分析表明,一旦cBN微颗粒形成,在随后的生长过程中,cBN在Li3BN2熔体中以扩散的方式进行台阶生长,从而形成宏观可见的cBN单晶.  相似文献   
5.
气相色谱-质谱法测定大蒜挥发油的组成   总被引:7,自引:0,他引:7  
采用改进的水蒸汽蒸馏法从山东金乡大蒜中提取挥发油。实验确定了气相色谱-质谱法分析大蒜油的条件,并对大蒜挥发油的化学成分进行了定性分析,共鉴定出20种物质。用峰面积归一化法对各物质的相对含量进行了测定,结果表明含硫化合物约占挥发油总成分的95%以上,其中含量最高的是大蒜新素,约占挥发油总量的三分之一。对低温储藏半年的挥发油进行分析的结果表明样品在低温下可稳定存放。  相似文献   
6.
利用静态高温高压触媒法合成优质cBN单晶,合成温度和压强范围形成一“V”形区域.从Gibbs自由能(△G)角度分析了采用Li3N为触媒合成cBN单晶时,不同物相在“V”形区及其扩大区域(1600~2200 K、4.8 ~6.0 GPa)内向cBN相变的可能性.分别计算了高温高压下hBN+ Li3 N-→Li3 BN2 、hBN→cBN和Li3BN2→cBN+ Li3N三个反应的△G.结果表明:在“V”形区及其扩大区域内,前二个反应的△G均为负值,分别为-35~-10 kJ/mol和-25 ~-19k J/mol;而第三个反应的△G有正有负,其正值范围形成了一个温度、压强的“V”形区域.该“V”形区基本覆盖了以前文献中提到的“V”形区.这说明在合成优质cBN单晶的温度压强范围内,Li3 BN2稳定存在,不能分解出cBN.Li3N触媒体系内的cBN可能源自hBN的直接相变,而非Li3BN2的分解.但分析表明Li3BN2促进了hBN→cBN的相变.  相似文献   
7.
以Li3N为触媒,采用静态高压法合成了大颗粒立方氮化硼单晶.以扫描电镜(SEM)观察了快冷后的的立方氮化硼(cBN)合成块的断口形貌,并利用X射线衍仪(XRD)对cBN晶体附近的物质分层进行了表征.扫描结果显示,cBN处于熔融状物质的包裹之中,并在cBN的裸表面发现了生长台阶及近似熔入台阶中的颗粒状物质;XRD分层表征结果表明,cBN晶体表面分层界面中检测出含有中间相Li3BN2和cBN小颗粒.由此推断,高温高压下Li3N可以与hBN发生共熔反应并转变为中间相Li3BN2;根据分层表征结果可推测,在适量中间相Li3BN2存在的区域cBN小颗粒更易于聚集并通过不断消耗扩散到大颗粒cBN晶体表面的cBN小颗粒的方式不断长大.  相似文献   
8.
静态高温高压触媒法是工业生产立方氮化硼单晶的主要方法,其中触媒的选择至关重要。研究触媒与cBN的相关性对于探索立方氮化硼的合成机理,改进合成工艺,获得性能优良的氮化硼晶体有重要的意义。本文以工业生产中常用的锂、镁、钙基触媒立方氮化硼合成为主,阐述了触媒在立方氮化硼合成中的作用及近年来立方氮化硼的合成机理研究进展,并在此基础上提出了今后的研究方向。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号