首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
晶体学   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
N型隧穿氧化层钝化接触(Tunnel Oxide Passivating Contacts,TOPCon)太阳能电池完成印刷烧结后,再经过光注入,效率有明显提升,主要表现在Voc(开路电压)及FF(填充因子)的提升。其机理在于通过温度和光照强度调节费米能级变化,控制H总量及价态来提高钝化性能。钝化膜层的质量、硅基体掺杂浓度、光注入退火时的工艺温度等对光注入退火工艺提升效率有很大影响。实验证明转换效率越低的电池片经过光注入后效率提升幅度越大;转换效率越高的电池片缺陷会更小,经过光注入退火工艺后几乎无增益。另外同心圆在经过光注入退火工艺后会明显消除。本文主要研究温度、光强、基体电阻率、正表面金属接触面积大小、poly-Si(多晶硅)厚度对光注入退火工艺增效的影响。  相似文献   
2.
多晶硅氧化物(POLO)结构是在晶硅表面依次生长一层极薄的界面氧化层与多晶硅层所形成的钝化接触结构。基于POLO结构的钝化接触技术不仅能够获得优异的表面钝化特性,而且避免了金属与晶硅表面的直接接触,极大地降低了金属与晶硅表面的接触复合。目前应用POLO钝化接触结构制作的小面积晶硅太阳能电池转换效率高达26.1%,制作的大面积晶硅太阳能电池产业化效率已经超过24.5%。同时POLO钝化接触技术应用于晶硅电池的制作可以承受高温工艺,兼容现有的晶硅电池产业化设备,是未来极具产业化潜力的钝化接触技术方案。本文主要综述了POLO钝化接触结构中载流子的传输机理及相应的量化参数表征方法;对比了POLO结构制备中界面氧化层生长、多晶硅层的沉积、掺杂及氢化处理的方法;总结了多晶硅层的寄生吸收效应、晶硅表面形貌结构、掺杂浓度分布对POLO结构钝化接触特性的影响;简述了POLO钝化接触技术的研究进展及当前POLO电池制作面临的技术难点。  相似文献   
3.
本文旨在针对TOPCon(Tunnel Oxide Passivated Contact背面隧穿氧化钝化接触)晶硅电池制备过程中,背面钝化多晶硅层沉积引起的硅片正面边缘沉积多晶硅绕镀层的去除进行工艺研究,进一步解决了电池外观不良和该多晶硅层对电池正面光的吸收影响.文中分别尝试采用HF-HNO3混酸溶液和KOH碱溶液两种方式进行腐蚀处理,然后通过对处理后硅片正面的工艺控制点监控和电池EL检测等手段评估去除效果.其中HF 1wt;、HNO350wt;混合溶液时腐蚀4 min以上可去除该绕镀层,但是大于6 min后硅片正面的方块电阻提升、硼掺杂浓度等变化幅度很大.KOH质量分数0.1wt;、添加剂体积分数5vol;混合溶液60℃时,腐蚀2.5 min以上可去除该绕镀层且方块电阻等测试相对变化幅度较小.故前者对电池后期电极的制备工艺要求更高否则容易引起欧姆接触不良,后者则对电池电极的制备工艺控制窗口更大.所以认为在多晶硅绕镀层的去除方面KOH腐蚀更适合工业批量化生产工艺选择.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号