首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1403篇
  免费   120篇
  国内免费   12篇
化学   914篇
晶体学   21篇
力学   59篇
数学   121篇
物理学   420篇
  2024年   4篇
  2023年   22篇
  2022年   26篇
  2021年   79篇
  2020年   65篇
  2019年   63篇
  2018年   53篇
  2017年   44篇
  2016年   84篇
  2015年   63篇
  2014年   79篇
  2013年   114篇
  2012年   100篇
  2011年   115篇
  2010年   75篇
  2009年   56篇
  2008年   50篇
  2007年   51篇
  2006年   43篇
  2005年   37篇
  2004年   36篇
  2003年   20篇
  2002年   12篇
  2001年   10篇
  2000年   12篇
  1999年   6篇
  1998年   4篇
  1997年   8篇
  1996年   14篇
  1995年   11篇
  1994年   12篇
  1993年   6篇
  1992年   10篇
  1991年   15篇
  1990年   13篇
  1989年   6篇
  1988年   11篇
  1987年   10篇
  1986年   13篇
  1985年   15篇
  1984年   5篇
  1983年   5篇
  1982年   9篇
  1981年   4篇
  1980年   6篇
  1978年   4篇
  1977年   7篇
  1976年   3篇
  1974年   7篇
  1973年   4篇
排序方式: 共有1535条查询结果,搜索用时 31 毫秒
1.
Mediterranean Journal of Mathematics - In this paper, we introduce the k-generalized Stockwell transform on $${\mathbb {R}}$$ . We investigate for this transform the main theorems of Harmonic...  相似文献   
2.
Journal of Thermal Analysis and Calorimetry - A computational analysis has been performed to study the impact of magnetic field on entropy generation due to mixed convective nanofluid flow with top...  相似文献   
3.
Journal of Solid State Electrochemistry - Hierarchical nanostructure materials have attracted significant attention due to their fascinating structural features for the application of...  相似文献   
4.
The development of organic electron acceptor materials is one of the key factors for realizing high-performance organic solar cells (OSCs). Nonfullerene electron acceptors, compared to traditional fullerene acceptor materials, have gained much impetus owing to their better optoelectronic tunabilities and lower cost, as well as higher stability. Therefore, 5 three-dimensional (3D) cross-shaped acceptor materials having a spirobifullerene core flanked with 2,1,3-benzothiadiazole are designed from a recently synthesized highly efficient acceptor molecule SF(BR) 4 and are investigated in detail with regard to their use as acceptor molecules in OSCs. The density functional theory (DFT) and time-dependent DFT (TDDFT) calculations have been performed for the estimation of frontier molecular orbital (FMO) analysis, density of states analysis, reorganization energies of electron and hole, dipole moment, open-circuit voltage, photo-physical characteristics, and transition density matrix analysis. In addition, the structure-property relationship is studied, and the influence of end-capped acceptor modifications on photovoltaic, photo-physical, and electronic properties of newly selected molecules ( H1-H5 ) is calculated and compared with reference ( R ) acceptor molecule SF(BR) 4 . The structural tailoring at terminals was found to effectively tune the FMO band gap, energy levels, absorption spectra, open-circuit voltage, reorganization energy, and binding energy value in selected molecules H1 to H5 . The 3D cross-shaped molecules H1 to H5 suppress the intermolecular aggregation in PTB7-Th blend, which leads to high efficiency of acceptor material H1 to H5 in OSCs. Consequently, better optoelectronic properties are achieved from designed molecules H1 to H5 . It is proposed that the conceptualized molecules are superior than highly efficient spirobifullerene core-based SF(BR) 4 acceptor molecules and, thus, are recommended to experiments for future developments of highly efficient solar cells.  相似文献   
5.
High-density lipoproteins (HDLs) have anti-inflammatory and antioxidant properties and are potentially cardio-protective. Defective HDL function is caused by alterations in both the proteome and lipidome of HDL particles. As potential biomarkers, the development of analytical methods is necessary for the enrichment of HDLs. Therefore, a method for selective enrichment of HDLs using immobilized metal ion affinity chromatography (IMAC) and metal oxide affinity chromatography (MOAC) is presented. SPE-based isolation of HDLs from whole serum is adopted as an alternative to traditional ultracentrifugation methods followed by SDS–PAGE. The enrichment mechanism relies on isoelectric points of lipoproteins and metal oxide. Negatively charged lipoprotein particles interact with positively charged metal oxides and IMAC affinity, which acts as a cation. Identified proteins from HDL through MALDI–MS analysis are apo AI, AII, AIV, CI, CIII, E, J, M, H, serum amyloid A and other nonapoproteins that are part of HDL particles and perform cellular functions. This serum-based proteomics approach gives insight into the functional role of HDL. HDL-associated phospholipids have also been analyzed by LDI–MS. Results suggest that the adopted analytical strategy is a feasible idea to extract lipoproteins from serum. A comparative study of healthy and diseased samples using this approach will provide valuable information in future.  相似文献   
6.
Adding perfluoroalkyl (PF) segments to amphiphilic copolymers yields triphilic copolymers with new application profiles. Usually, PF segments are attached as terminal blocks via Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC). The purpose of the current study is to design new triphilic architectures with a PF segment in central position. The PF segment bearing bifunctional atom transfer radical polymerization (ATRP) initiator is employed for the fabrication of triphilic poly(propylene oxide)-b-poly(glycerol monomethacrylate)-b-PF-b-poly(glycerol monomethacrylate)-b-poly(propylene oxide) PPO-b-PGMA-b-PF-b-PGMA-b-PPO pentablock copolymers by a combined ATRP and CuAAC reaction approach. Differential scanning calorimetry indicates the PF-initiator to undergo a solid–solid phase transition at 63°C before the final crystal melting at 95°C. This is further corroborated by polarized optical microscopy and X-ray diffraction studies. The PF-initiator could successfully polymerize solketal methacrylate (SMA) under typical ATRP conditions producing well-defined Br-PSMA-b-PF-b-PSMA-Br triblock copolymers that are then converted into PPO-b-PSMA-b-PF-b-PSMA-b-PPO pentablock copolymer via CuAAC reaction. Subsequently, acid hydrolysis of the PSMA blocks afforded water soluble well-defined triphilic pentablock copolymers PPO-b-PGMA-b-PF-b-PGMA-b-PPO with fluorophilic central segment, hydrophilic middle blocks, and lipophilic outer blocks. The triphilic block copolymers could self-assemble, depending upon the preparatory protocol, into spherical and filament-like phase-separated nanostructures as revealed by transmission electron microscopy.  相似文献   
7.
Journal of Thermal Analysis and Calorimetry - In this paper, the variation of thermophysical properties such as the thermal conductivity, thermal energy storage capacity, viscosity, and phase...  相似文献   
8.
Zinc(II) bis(dipyrrin) complexes, which feature intense visible absorption and efficient symmetry breaking charge transfer (SBCT) are outstanding candidates for photovoltaics but their short lived triplet states limit applications in several areas. Herein we demonstrate that triplet excited state dynamics of bis(dipyrrin) complexes can be efficiently tuned by attaching electron donating aryl moieties at the 5,5′-position of the complexes. For the first time, a long lived triplet excited state (τT=296 μs) along with efficient ISC ability (ΦΔ=71 %) was observed for zinc(II) bis(dipyrrin) complexes, formed via SBCT. The results revealed that molecular geometry and energy gap between the charge transfer (CT) state and triplet energy levels strongly control the triplet excited state properties of the complexes. An efficient triplet–triplet annihilation upconversion system was devised for the first time using a SBCT architecture as triplet photosensitizer, reaching a high upconversion quantum yield of 6.2 %. Our findings provide a blueprint for the development of triplet photosensitizers based on earth abundant metal complexes with long lived triplet state for revolutionary photochemical applications.  相似文献   
9.
This study reports the synthesis of sulfonamide-derived Schiff bases as ligands L 1 and L 2 as well as their transition metal complexes [VO(IV), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)]. The Schiff bases (4-{E-[(2-hydroxy-3-methoxyphenyl)methylidene]amino}benzene-1-sulfonamide ( L 1 ) and 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzene-1-sulfonamide ( L 2 ) were synthesized by the condensation reaction of 4-aminobenzene-1-sulfonamide and 4-amino-N-(3-methyl-2,3-dihydro-1,2-oxazol-5-yl)benzene-1-sulfonamide with 2-hydroxy-3-methoxybenzaldehyde in an equimolar ratio. Sulfonamide core ligands behaved as bidentate ligands and coordinated with transition metals via nitrogen of azomethine and the oxygen of the hydroxyl group. Ligand L 1 was recovered in its crystalline form and was analyzed by single-crystal X-ray diffraction technique which held monoclinic crystal system with space group (P21/c). The structures of the ligands L 1 and L 2 and their transition metal complexes were established by their physical (melting point, color, yields, solubility, magnetic susceptibility, and conductance measurements), spectral (UV–visible [UV–Vis], Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and mass analysis), and analytical (CHN analysis) techniques. Furthermore, computational analysis (vibrational bands, frontier molecular orbitals (FMOs), and natural bonding orbitals [NBOs]) were performed for ligands through density functional theory utilizing B3LYP/6-311+G(d,p) level and UV–Vis analysis was carried out by time-dependent density functional theory. Theoretical spectroscopic data were in line with the experimental spectroscopic data. NBO analysis confirmed the extraordinary stability of the ligands in their conjugative interactions. Global reactivity parameters computed from the FMO energies indicated the ligands were bioactive by nature. These procedures ensured the charge transfer phenomenon for the ligands and reasonable relevance was established with experimental results. The synthesized compounds were screened for antimicrobial activities against bacterial (Streptococcus aureus, Bacillus subtilis, Eshcheria coli, and Klebsiella pneomoniae) species and fungal (Aspergillus niger and Aspergillus flavous) strains. A further assay was designed for screening of their antioxidant activities (2,2-diphenyl-1-picrylhydrazine radical scavenging activity, total phenolic contents, and total iron reducing power) and enzyme inhibition properties (amylase, protease, acetylcholinesterase, and butyrylcholinesterase). The substantial results of these activities proved the ligands and their transition metal complexes to be bioactive in their nature.  相似文献   
10.
Theoretical and Mathematical Physics - We explore conformal Ricci collineations (CRCs) for static space–times with maximal symmetric transverse spaces. Solving the CRC equations in the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号