首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李鹏章  王粤博 《化学进展》2012,(9):1785-1793
磷酸化作用是最重要的蛋白质翻译后修饰方式之一,它是蛋白质组学的一个重要分支,在细胞识别、细胞信息传递、基因表达和新陈代谢等方面发挥着重要作用。采用适当方法对磷酸化肽进行分析有助于我们更好地了解生理病理机制。但是直接进行质谱分析时磷酸化肽的信号强度会受到无机盐以及大量非磷酸化肽的抑制,选择性差。为解决这一难题,在质谱分析前要对磷酸化肽进行选择性富集。本文回顾了几种常用的磷酸化肽富集方法,介绍了每种方法的发展状况和常用材料,其中包括固定金属离子亲和色谱法、金属氧化物富集法、强阴阳离子交换色谱法和MALDI靶板富集法。最后总结了各种富集方法的优缺点,对有效的磷酸化肽富集策略进行了前景展望。  相似文献   

2.
李莎  王露  王迎  陈平 《分析测试学报》2020,39(3):416-422
目前磷酸化肽段鉴定主要依赖于质谱技术,但磷酸化肽段的低丰度性以及来自非磷酸化肽段的干扰等因素,影响质谱的分析与鉴定。因此质谱分析前磷酸化肽段的富集,是深入研究磷酸化蛋白质组学的先决条件。该文介绍了磷酸化蛋白质组学中传统的以及新建立的一些磷酸化肽段分离富集方法的原理及优缺点,这些方法包括固相金属离子亲和色谱法(IMAC)、金属氧化亲和色谱法(MOAC)、强阳/阴离子交换色谱法(SCX/SAX)、亲水相互作用色谱法(HILIC)、静电排斥亲水相互作用色谱法(ERLIC)、化学衍生法、MALDI靶盘富集法以及多种富集方法相结合。  相似文献   

3.
The location of phosphorylation plays a vital role for the elucidation of biological processes. The challenge of low stoichiometry of phosphoproteins and signal suppression of phosphopeptides by nonphosphopeptides in mass spectrometry (MS) analysis makes the selective enrichment of phosphopeptides prior to MS analysis necessary. Besides the immobilized metal affinity chromatography (IMAC) method, some affinity methods based on nanoparticles displayed a higher enrichment efficiency for phosphopeptides such as Fe(3)O(4)/TiO2 and Fe(3)O(4)/ZrO(2) nanoparticles. To further improve the selectivity and compatibility of the affinity methods, a novel strategy based on magnetic nanoparticles coated with zirconium phosphonate for the enrichment of phosphopeptides has been developed in this study. Under optimized experimental conditions, 1 x 10(-9) M phosphopeptides in 50 microL tryptic digest of beta-casein could be enriched and identified successfully. Reliable results were also obtained for 1 x 10(-8) M phosphopeptides in 50 microL tryptic digest of beta-casein in the presence of nonphosphopeptides from a tryptic digest of bovine serum albumin (BSA) over 20 times in concentration. The performance of nanoparticles for use in a real sample was further demonstrated by employing the strong cation-exchange chromatography (SCX) fraction of a tryptic digest of a protein extract from Chang liver cells as a model sample. Experimental results show that the nanoparticles can be easily and effectively used for enrichment of phosphopeptides in low concentration. Most importantly, our approach is more compatible with commonly used SCX strategies than Fe(3+)-IMAC. The proposed method thus has great potential for future studies of large-scale phosphoproteomes.  相似文献   

4.
Since protein phosphorylation is a dominant mechanism of information transfer in cells, there is a great need for methods capable of accurately elucidating sites of phosphorylation. In recent years mass spectrometry has become an increasingly viable alternative to more traditional methods of phosphorylation analysis. The present study used immobilized metal affinity chromatography (IMAC) coupled with a linear ion trap mass spectrometer to analyze phosphorylated proteins in mouse liver. A total of 26 peptide sequences defining 26 sites of phosphorylation were determined. Although this number of identified phosphoproteins is not large, the approach is still of interest because a series of conservative criteria were adopted in data analysis. We note that, although the binding of non-phosphorylated peptides to the IMAC column was apparent, the improvements in high-speed scanning and quality of MS/MS spectra provided by the linear ion trap contributed to the phosphoprotein identification. Further analysis demonstrated that MS/MS/MS analysis was necessary to exclude the false-positive matches resulting from the MS/MS experiments, especially for multiphosphorylated peptides. The use of the linear ion trap considerably enabled exploitation of nanoflow-HPLC/MS/MS, and in addition MS/MS/MS has great potential in phosphoproteome research of relatively complex samples.  相似文献   

5.
An integrated analytical strategy for enrichment, detection and sequencing of phosphorylated peptides by matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS/MS) is reported. o-Phosphoric acid was found to enhance phosphopeptide ion signals in MALDI-MS when used as the acid dopant in 2,5-dihydroxybenzoic acid (2,5-DHB) matrix. The effect was largest for multiply phosphorylated peptides, which exhibited an up to ten-fold increase in ion intensity as compared with standard sample preparation methods. The enhanced phosphopeptide response was observed during MALDI-MS analysis of several peptide mixtures derived by proteolytic digestion of phosphoproteins. Furthermore, the mixture of 2,5-DHB and o-phosphoric acid was an excellent eluant for immobilized metal affinity chromatography (IMAC). Singly and multiply phosphorylated peptide species were efficiently recovered from Fe(III)-IMAC columns, reducing sample handling for phosphopeptide mapping by MALDI-MS and subsequent phosphopeptide sequencing by MALDI-MS/MS. The enhanced response of phosphopeptide ions in MALDI facilitates MS/MS of large (>3 kDa) multiply phosphorylated peptide species and reduces the amount of analyte needed for complete characterization of phosphoproteins.  相似文献   

6.
The complete characterization of phosphorylated proteins requires an efficient procedure for the enrichment of phosphopeptides from amongst a complicated peptide mixture. The sensitivity of the traditional immobilized metal affinity chromatography (IMAC) approach is severely affected by various buffers, detergents and other reagents normally utilized in biochemical and cell biological procedures, and thus pre-purification steps such as reversed-phase chromatography is required prior to phosphopeptide enrichment. Here we evaluate the use of different 'non-phosphopeptide-excluding compounds' in the loading buffer for titanium dioxide (TiO(2)) chromatography and show that TiO(2) is more robust and tolerant towards many reagents, including salts, detergents and other low molecular mass molecules, than conventional IMAC. In addition, we show that the inclusion of various detergents can enhance the efficiency of this enrichment method, as phosphopeptides that otherwise adhere to plastic surfaces can be efficiently solubilized and subsequently purified. The TiO(2) chromatography technique is also compared to zirconium dioxide chromatography for phosphopeptide enrichment.  相似文献   

7.
提出一种除盐-富集串联用于磷酸肽富集研究的思路。选用C18柱和铈(Ⅳ)修饰的壳聚糖材料进行脱盐实验,以制备的基于聚合物基体螯合Fe3+的亲和色谱材料为富集材料。将直接富集和串联策略应用到标准品和血清中,研究结果表明,该富集材料具有高选择性和高灵敏度(1.6 fmol),铈(Ⅳ)修饰的壳聚糖材料前提下的串联策略能明显降低样品的复杂性。相比直接富集方法,能够提高磷酸化肽的覆盖率。  相似文献   

8.
Aluminium (iii) is one of the most abundant metal ions found in soil. Typically, Al(+3) is bound to minerals, but its bioavailability and toxicity toward vascular plants increases with increasing soil acidity. Ectomycorrhizal fungi, which live symbiotically on the roots of numerous woody plants, often confer Al(+3) resistance to host plants by reducing metal availability to the plant by unknown mechanisms. A potential mechanism of detoxification is binding of the Al(+3) by organic compounds that are exuded by the fungi into the surrounding soil and solution. A novel method has been developed to purify and characterize Al(+3) binding ligands from Pisolithus tinctorius exudate solutions using Al(+3) immobilized metal affinity chromatography (IMAC), reversed phase chromatography, and mass spectrometry. Fungal exudates produced by P. tinctorius exhibit a strong binding capacity for Al(+3), allowing their selective enrichment and collection using this IMAC method. Elution of the ligands requires the use of high pH. RP-HPLC separation and elemental analysis of the IMAC elutent indicates that the Al(+3) and the exudate ligands both elute from the column but are not bound in a complex. Thus, reversed phase HPLC at pH 10 is used for separation of the ligands and Al(+3) prior to MS analysis. The strongest binding IMAC fraction is analyzed by electrospray ionization mass spectrometry in positive and negative ion modes. This report provides new methods for the direct purification and analysis of naturally occurring ligands that bind hard metal ions.  相似文献   

9.
To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO2(2+)) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of aminophosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis.  相似文献   

10.
Titanium dioxide metal oxide affinity chromatography (TiO2‐MOAC) is widely regarded as being more selective than immobilized metal‐ion affinity chromatography (IMAC) for phosphopeptide enrichment. However, the widespread application of TiO2‐MOAC to biological samples is hampered by conflicting reports as to which experimental conditions are optimal. We have evaluated the performance of TiO2‐MOAC under a wide range of loading and elution conditions. Loading and stringent washing of peptides with strongly acidic solutions ensured highly selective enrichment for phosphopeptides, with minimal carryover of non‐phosphorylated peptides. Contrary to previous reports, the addition of glycolic acid to the loading solution was found to reduce specificity towards phosphopeptides. Base elution in ammonium hydroxide or ammonium phosphate provided optimal specificity and recovery of phosphorylated peptides. In contrast, elution with phosphoric acid gave incomplete recovery of phosphopeptides, whereas inclusion of 2,5‐dihydroxybenzoic acid in the eluant introduced a bias against the recovery of multiply phosphorylated peptides. TiO2‐MOAC was also found to be intolerant of many reagents commonly used as phosphatase inhibitors during protein purification. However, TiO2‐MOAC showed higher specificity than immobilized gallium (Ga3+), immobilized iron (Fe3+), or zirconium dioxide (ZrO2) affinity chromatography for phosphopeptide enrichment. Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) was more effective in detecting larger, multiply phosphorylated peptides than liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS), which was more efficient for smaller, singly phosphorylated peptides. Copyright © 2009 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

11.
Over the past couple of years, proteomics pattern analysis has emerged as an effective method for the early diagnosis of diseases such as ovarian, breast, or prostate cancer, without identification of single biomarkers. MALDI-TOF MS, for example, offers a simple approach for fast and reliable protein profiling, especially by using carrier materials with various physical and chemical properties, in combination with a MALDI matrix. This approach is referred to as material-enhanced laser desorption/ionization (MELDI). In this paper, we report the development and application of derivatized carrier materials [cellulose, silica, poly(glycidyl methacrylate/divinylbenzene) (GMA/DVB) particles, and diamond powder] for fast and direct MALDI-TOF MS protein profiling. The applicability of MELDI for rapid protein profiling was evaluated with human serum samples. These carriers, having various hydrophobicities, resulted in characteristic mass fingerprints, even if all materials were derivatized with iminodiacetic acid (IDA) to yield an immobilized metal affinity chromatography (IMAC) functionality. Our study demonstrates that analyzing complex biological samples, such as human serum, by employing different MELDI carrier materials yielded type- and size-dependent performance variation.  相似文献   

12.
Current and prospective applications of metal ion-protein binding   总被引:7,自引:0,他引:7  
Since immobilized metal ion affinity chromatography (IMAC) was first introduced, several variants of this method and many other metal affinity-based techniques have been devised. IMAC quickly established itself as a highly reliable purification procedure, showing rapid expansion in the number of preparative and analytical applications while not remaining confined to protein separation. It was soon applied to protein refolding (matrix-assisted refolding), evaluation of protein folding status, protein surface topography studies and biosensor development. In this review, applications in protein processing are described of IMAC as well as other metal affinity-based technologies.  相似文献   

13.
This work describes an integrated glass microdevice for proteomics, which directly couples proteolysis with affinity selection. Initial results with standard phosphopeptide fragments from β-casein in peptide mixtures showed selective capture of the phosphorylated fragments using immobilized metal affinity chromatography (IMAC) beads packed into a microchannel. Complete selectivity was seen with angiotensin, with capture of only the phosphorylated form. On-chip proteolysis, using immobilized trypsin beads packed into a separate channel, was directly coupled to the phosphopeptide capture and the integrated devices evaluated using β-casein. Captured and eluted fragments were analyzed using both capillary electrophoresis (CE) and capillary liquid chromatography/mass spectrometry (cLC/MS). The results show selective capture of only phosphopeptide fragments, but incomplete digestion of the protein was apparent from multiple peaks in the CE separations. The MS analysis indicated a capture bias on the IMAC column for the tetraphosphorylated peptide fragment over the monophosphorylated fragment. Application to digestion and capture of a serum fraction showed capture of material; however, non-specific binding was evident. Additional work will be required to fully optimize this system, but this work represents a novel sample preparation method, incorporating protein digestion on-line with affinity capture for proteomic applications.  相似文献   

14.
An analytical free flow capillary isotachophoresis procedure, with a discontinuous electrolyte system, for the detailed analysis of lipoproteins in human body fluids has been developed. The technique is based on prestaining whole serum lipoproteins with a lipophilic dye before separation. Human serum lipoproteins are separated into 14 well-characterized subfractions according to their electrophoretic mobility. High density lipoproteins (fraction 1 to 6) are separated into three major subpopulations, the fast migrating high density lipoprotein (HDL) subpopulation, containing mainly apo AI and phosphatidylcholine, the subpopulation with intermediate mobility, consisting of particles rich in apo AII, apo E, and C apolipoproteins, and the slowly migrating HDL subfraction, containing mainly particles rich in apo AI, apo AIV, and lecithin: cholesterol acyltransferase (LCAT) activity. The apo B containing lipoproteins (fraction 7 to 14) can be subdivided into four major functional groups. The first represents chylomicron derived particles and large triglyceride-rich very low density lipoproteins (VLDL). The second group consists of small VLDL and intermediate density lipoprotein (IDL) particles, anf the third and fourth group represent the low density lipoproteins. The isotachophoretic analysis of human serum samples obtained from patients with hyperlipoproteinemias is compatible with the classification according to the Frederickson phenotypes and reflects the respective biochemical abnormalities. Furthermore, several genetic disorders of lipid and lipoprotein metabolism like HDL deficiency syndromes, familial LCAT deficiency, Fish eye disease, hypobetalipoproteinemia and abetalipoproteinemia can be well characterized by analytical capillary iso tachophoresis. In addition to patient analysis we investigated the influence of lipid lowering drugs on the lipoprotein subfraction distribution during therapy with analytical capillary isotachophoresis.  相似文献   

15.
The enrichment of phosphopeptides using immobilized metal ion affinity chromatography (IMAC) and subsequent mass spectrometric analysis is a powerful protocol for detecting phosphopeptides and analyzing their phosphorylation state. However, nonspecific binding peptides, such as acidic, nonphosphorylated peptides, often coelute and make analyses of mass spectra difficult. This study used a partial chemical tagging reaction of a phosphopeptide mixture, enriched by IMAC and contaminated with nonspecific binding peptides, following a modified beta-elimination/Michael addition method, and dynamic mass analysis of the resulting peptide pool. Mercaptoethanol was used as a chemical tag and nitrilotriacetic acid (NTA) immobilized on Sepharose beads was used for IMAC enrichment. The time-dependent dynamic mass analysis of the partially tagged reaction mixture detected intact phosphopeptides and their mercaptoethanol-tagged derivatives simultaneously by their mass difference (-20 Da for each phosphorylation site). The number of new peaks appearing with the mass shift gave the number of multiply phosphorylated sites in a phosphopeptide. Therefore, this partial chemical tagging/dynamic mass analysis method can be a powerful tool for rapid and efficient phosphopeptide identification and analysis of the phosphorylation state concurrently using only MS analysis data.  相似文献   

16.
Immobilized metal ion affinity chromatography (IMAC) has been widely used for the enrichment of phosphopeptides, whereas no report exists describing the use of IMAC columns for the enrichment of sulfopeptides. In this study, we used IMAC-Ga microcolumns for the enrichment of sulfopeptides from a complex mixture of peptides, extracted from skin secretions of the Pachymedusa dacnicolor frog. The enriched fraction obtained by IMAC-Ga was analyzed by liquid chromatograpy/electrospray ionization mass spectrometry (LC/ESI-MS) in an Orbitrap XL and by matrix-assisted laser desorption/ionization time-of-flight time-of-flight (MALDI-TOF/TOF) in an ABI 4800 instrument. From this fraction, different sulfated and non-sulfated peptides belonging to the caerulin and bradykinin families were structurally characterized. Other interesting negatively charged groups, such as phosphate adducts of dermaseptins and pyridoxal phosphate attached to a protease inhibitor, were also characterized. Unexpectedly, some dermaseptin antimicrobial peptides were also enriched by IMAC-Ga and a Sauvatine-like peptide was also fully sequenced. Furthermore, neutral loss of sulfated peptides and their fragmentation patterns in the gas phase were also compared using collision-induced dissociation (CID) and high-energy collision dissociation (HCD). Our present study provides evidence that IMAC-Ga enrichment is a fast, useful and promising method for high-throughput analysis of sulfated-peptides, since high-resolution mass spectrometers can be used for this purpose.  相似文献   

17.
赵燕青  许文辉  贾琼 《色谱》2022,40(10):862-871
蛋白质的磷酸化和糖基化作为研究最广泛的两种翻译后修饰(PTMs),在疾病的早期无创诊断、预后和治疗评估中表现出越来越大的潜力。蛋白质的异常磷酸化和糖基化经常被用于临床蛋白质组学研究和疾病相关生物标志物的发现。目前已有多种材料被开发用于磷酸化肽和糖肽的富集研究,其中,智能响应材料由于具有独特的响应特性,已被陆续报道用于磷酸化肽和糖肽的富集。智能响应材料可对外界刺激做出响应,发生结构和性质上的变化,将光、电、热、机械等信号转化为生物化学信号。响应分子是决定智能响应材料响应特性的先决条件,它们在不同刺激条件下(如温度、pH、光、机械应力、电磁场等)的可逆异构化将导致材料的宏观物理和化学性质的动态变化。与传统材料相比,智能响应材料可以可逆地“打开”和“关闭”,具有更好的可调控性。由于引起智能材料响应的刺激信号对其性能具有重要的影响,综述根据施加的刺激种类对智能响应材料进行分类,具体分为外源性响应材料和内源性响应材料,且分别总结了外源性响应材料、内源性响应材料以及内外源共同响应材料在磷酸化肽和糖肽富集方面的工作。此外,综述对智能响应材料在磷酸化肽和糖肽富集方面的发展前景进行了展望,并且提出了智能响应材料在其他蛋白质翻译后修饰方面的应用中存在的挑战。  相似文献   

18.
An automated online immobilized metal affinity chromatography/high‐performance liquid chromatography mass spectrometric (IMAC‐HPLC/MS/MS) method was developed to study cytidine 3′,5′‐cyclic monophosphate (cCMP)‐specific protein phosphorylation, analogous to a previously successful offline IMAC method using microvolume IMAC pipette tips. The optimized method identified murine brain phosphoproteins selectively modified by challenge with cCMP, using manual interpretation of the results to confirm both phosphorylation and selectivity of response to cCMP. A number of proteins identified by this strategy have potential roles in hyperproliferation, a previously reported response to elevated levels of cCMP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
介绍了固定金属离子亲和色谱法(IMAC)的方法原理、金属螯合柱的制备、固定金属离子与蛋白质的相互作用以及影响这些作用的因素、不同色谱条件下各种作用力对蛋白质保留值的贡献、蛋白质的洗脱原理和IMAC在蛋白质分离纯化中的应用,论述了IMAC的特点、不足、克服的方法和今后应解决的问题。  相似文献   

20.
Protein phosphorylation analysis is an enormous challenge. This review summarises the currently used techniques, which are based on radiolabelling and mass spectrometry as well as electrophoretic and chromatographic separation. Many methods exist, but there is still no single procedure applicable to all phosphoproteins. MS is able to deliver information about the location of phosphorylation sites, but phosphospecific properties with respect to ionisation present obstacles. Therefore, multidimensional approaches involving several analytical methods are often necessary to conquer phosphorylation site identification.Abbreviations 2D Two-dimensional - CE Capillary electrophoresis - CID Collision-induced dissociation - ECD Electron capture dissociation - ESI Electrospray ionisation - FT-ICR Fourier transform ion cyclotron resonance - HPLC High performance liquid chromatography - ICAT Isotope coded affinity tags - ICP Inductively-coupled plasma - IDA Immino-diacetic acid - IMAC Immobilised metal affinity chromatography - IRMPD Infrared multiphoton dissociation - IT Ion trap - MALDI Matrix-assisted laser desorption/ionisation - MRP14 Myeloid-related protein 14 - MS Mass spectrometry - NTA Nitrilo-triacetic acid - PAGE Polyacrylamide gel electrophoresis - PDI Protein disulfide isomerase - pS Phosphoserine residue - PSD Post-source decay - pT Phosphothreonine residue - PVDF Polyvinylidene fluoride - pY Phosphotyrosine residue - Q-TOF Quadrupole-time-of-flight - RP Reversed phase - SIM Single-ion monitoring - SDS Sodium dodecyl sulfate - SORI Sustained off-resonance irradiation - TLC Thin-layer chromatography - TOF Time-of-flight An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号