首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  国内免费   1篇
化学   30篇
晶体学   1篇
数学   2篇
物理学   2篇
  2022年   1篇
  2020年   3篇
  2013年   4篇
  2012年   4篇
  2011年   10篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
DNA nanotechnology plays an increasingly important role in the biomedical field; however, its application in the design of organic nanomaterials is underexplored. Herein, we report the use of DNA nanotechnology to transport a NIR‐II‐emitting nanofluorophore across the blood–brain barrier (BBB), facilitating non‐invasive imaging of brain tumors. Specifically, the DNA block copolymer, PS‐b‐DNA, is synthesized through a solid‐phase click reaction. We demonstrate that its self‐assembled structure shows exceptional cluster effects, among which BBB‐crossing is the most notable. Therefore, PS‐b‐DNA is utilized as an amphiphilic matrix to fabricate a NIR‐II nanofluorephore, which is applied in in vivo bioimaging. Accordingly, the NIR‐II fluorescence signal of the DNA‐based nanofluorophore localized at a glioblastoma is 3.8‐fold higher than the NIR‐II fluorescence signal of the PEG‐based counterpart. The notably increased imaging resolution will significantly benefit the further diagnosis and therapy of brain tumors.  相似文献   
2.
3.
4.
In this paper, we investigated electrochemical properties of polymer multilayers on gold substrates using impedance spectroscopy. The multilayer was prepared by chemoselective ligation between aldehyde- and oxyamine-functionalized polymers via a layer-by-layer approach. The impedance spectra in a buffer solution in the absence of redox species revealed the formation of highly impermeable and defect-free films. The dielectric thickness of the polymer film, which is proportional to the reciprocal of capacitance, linearly increased as the number of deposition layer increased. The defect area of the polymer multilayer was obtained using the faradaic impedance with redox species. The surface coverage of eight polymer layers was determined to be 99.99%. Thus, the layer-by-layer deposition via chemoselective ligation offers a new way to prepare a highly insulating and defect-free polymer layer with finely tunable capacitance as a function of the number of deposition layers.  相似文献   
5.
The rotational isomeric states (RIS) of glycerol at infinite dilution have been characterized in the aqueous phase via a 1 micros conventional molecular dynamics (MD) simulation, a 40 ns enhanced sampling replica exchange molecular dynamics (REMD) simulation, and a reevaluation of the experimental NMR data. The MD and REMD simulations employed the GLYCAM06/AMBER force field with explicit treatment of solvation. The shorter time scale of the REMD sampling method gave rise to RIS and theoretical scalar 3J(HH) coupling constants that were comparable to those from the much longer traditional MD simulation. The 3J(HH) coupling constants computed from the MD methods were in excellent agreement with those observed experimentally. Despite the agreement between the computed and the experimental J-values, there were variations between the rotamer populations computed directly from the MD data and those derived from the experimental NMR data. The experimentally derived populations were determined utilizing limiting J-values from an analysis of NMR data from substituted ethane molecules and may not be completely appropriate for application in more complex molecules, such as glycerol. Here, new limiting J-values have been derived via a combined MD and quantum mechanical approach and were used to decompose the experimental 3J(HH) coupling constants into population distributions for the glycerol RIS.  相似文献   
6.
The potential energy surfaces of chiral tetraamine Pt(II) coordination complexes were computed at the B3LYP/LANL2DZ level of theory by a systematic variation of two dihedral angles: C12–C15–C34–C37 (θ) and C24–C17–C31–C48 (ψ) employing a grid resolution of 30°. Potential energy surfaces calculated using density functional theory methods and Boltzmann-derived populations revealed strong preference for one diasteromer of each series studied. In addition, natural bond orbital analysis show that the minima are stabilized predominantly by a combination of electronic interactions between two phenyl groups, the phenyl groups and the Pt2+ ion, as well as with the amine groups. Additional experimental characterization of the diasteroisomers studied here is in progress and will permit further molecular modeling studies with the appropriate stereochemistry.  相似文献   
7.
Record-setting organic photovoltaic cells with PTB polymers have recently achieved ~8% power conversion efficiencies (PCE). A subset of these polymers, the PTBF series, has a common conjugated backbone with alternating thieno[3,4-b]thiophene and benzodithiophene moieties but differs by the number and position of pendant fluorine atoms attached to the backbone. These electron-withdrawing pendant fluorine atoms fine tune the energetics of the polymers and result in device PCE variations of 2-8%. Using near-IR, ultrafast optical transient absorption (TA) spectroscopy combined with steady-state electrochemical methods we were able to obtain TA signatures not only for the exciton and charge-separated states but also for an intramolecular ("pseudo") charge-transfer state in isolated PTBF polymers in solution, in the absence of the acceptor phenyl-C(61)-butyric acid methyl ester (PCBM) molecules. This led to the discovery of branched pathways for intramolecular, ultrafast exciton splitting to populate (a) the charge-separated states or (b) the intramolecular charge-transfer states on the subpicosecond time scale. Depending on the number and position of the fluorine pendant atoms, the charge-separation/transfer kinetics and their branching ratios vary according to the trend for the electron density distribution in favor of the local charge-separation direction. More importantly, a linear correlation is found between the branching ratio of intramolecular charge transfer and the charge separation of hole-electron pairs in isolated polymers versus the device fill factor and PCE. The origin of this correlation and its implications in materials design and device performance are discussed.  相似文献   
8.
Cyclic peptides are therapeutically attractive due to their high bioavailability, potential selectivity, and scaffold novelty. Furthermore, the presence of D-residues induces conformational preferences not followed by peptides consisting of naturally abundant L-residues. Therefore, comprehending how amino acids induce turns in peptides, subsequently facilitating cyclization, is significant in peptide design. Here, we performed 20-ns explicit-solvent molecular dynamics simulations for three diastereomeric peptides with stereochemistries: LLLLL, LLLDL, and LDLDL. Experimentally LLLLL and LDLDL readily cyclize, whereas LLLDL cyclizes in low yield. Simulations at 310 K produced conformations with inter-terminal hydrogen bonds that correlated qualitatively with the experimental cyclization trend. Energies obtained for representative structures from quantum chemical (B3LYP/PCM/cc-pVTZ//HF/6-31G*) calculations predicted pseudo-cyclic and extended conformations as the most stable for LLLLL and LLLDL, respectively, in agreement with the experimental data. In contrast, the most stable conformer predicted for peptide LDLDL was not a pseudo-cyclic structure. Moreover, D-residues preferred the experimentally less populated αL rotamers even when simulations were performed at a higher temperature and with strategically selected starting conformations. Energies calculated with molecular mechanics were consistent only with peptide LLLLL. Thus, the conformational preferences obtained for the all L-amino acid peptide were in agreement with the experimental observations. Moreover, refinement of the force field is expected to provide far-reaching conformational sampling of peptides containing D-residues to further develop force field-based conformational-searching methods. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
9.
We developed nanosized, reduced graphene oxide (nano-rGO) sheets with high near-infrared (NIR) light absorbance and biocompatibility for potential photothermal therapy. The single-layered nano-rGO sheets were ~20 nm in average lateral dimension, functionalized noncovalently by amphiphilic PEGylated polymer chains to render stability in biological solutions and exhibited 6-fold higher NIR absorption than nonreduced, covalently PEGylated nano-GO. Attaching a targeting peptide bearing the Arg-Gly-Asp (RGD) motif to nano-rGO afforded selective cellular uptake in U87MG cancer cells and highly effective photoablation of cells in vitro. In the absence of any NIR irradiation, nano-rGO exhibited little toxicity in vitro at concentrations well above the doses needed for photothermal heating. This work established nano-rGO as a novel photothermal agent due to its small size, high photothermal efficiency, and low cost as compared to other NIR photothermal agents including gold nanomaterials and carbon nanotubes.  相似文献   
10.
马波  刘立行 《分析化学》1994,22(10):1033-1036
本文提出了一种同时测定多组分的新方法,即等吸收点-多波长线性回归-导数分光光度法。利用金属离子-5-Br-PADAP-CPB三元络合显色体素,同时测定了重油中的铜、镍、锌,相对标准偏差小于2.6%,分析结果与ICP-AES及GF-AAS法吻合。与常规分光光度法比较,灵敏度提高10倍左右。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号