首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   1篇
  国内免费   1篇
化学   66篇
力学   1篇
数学   35篇
物理学   19篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   9篇
  2012年   9篇
  2011年   9篇
  2010年   8篇
  2008年   11篇
  2007年   7篇
  2006年   7篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1994年   2篇
  1991年   2篇
  1989年   6篇
  1988年   2篇
  1986年   1篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有121条查询结果,搜索用时 46 毫秒
1.
Harel and Puri (1989, J. Multivariate Anal. 29) studied the asymptotic behavior of the U-statistic and the one-sample rank order statistic for nonstationary absolutely regular processes. In this note, we present some applications of these results for Markov processes as well as ARMA processes.  相似文献   
2.
3.
4.
5.
We present a detailed theoretical treatment of single-electron transfer between He2+ and H?. The total cross section is calculated using stationary molecular states which are appropriate in the energy range covered by the experiments (between 0.5 and 2250 eV in the centre of mass frame). We use an expansion on a two-electron basis built with one-electron diatomic molecule (OEDM) orbitals and including the common translation factor of Errea et al. All coupling terms are calculated explicitly. Because of the small binding energy of H? compared to that of the ground state of He+, capture occurs into highly excited states of He+. Results obtained with a straight-line quasiclassical calculation are in good agreement with the experimental data. At low energy, He+ (n=5) +H(1s) is the dominant capture channel; at higher energy, the He+ (n=4) + H(1s) channel becomes important. The rise in the cross section below 6 eV can be attributed to the Coulomb attraction in the incoming channel. To account for this effect, a fully quantal calculation has been performed. The agreement with the low-energy measurements is then excellent.  相似文献   
6.
Statistical Inference for Stochastic Processes - This paper deals with the weak convergence of nonparametric estimators of the multidimensional and multidimensional-multivariate renewal functions...  相似文献   
7.
Decomposition of triacetone triperoxide is an entropic explosion   总被引:1,自引:0,他引:1  
Both X-ray crystallography and electronic structure calculations using the cc-pVDZ basis set at the DFT B3LYP level were employed to study the explosive properties of triacetone triperoxide (TATP) and diacetone diperoxide (DADP). The thermal decomposition pathway of TATP was investigated by a series of calculations that identified transition states, intermediates, and the final products. Counterintuitively, these calculations predict that the explosion of TATP is not a thermochemically highly favored event. It rather involves entropy burst, which is the result of formation of one ozone and three acetone molecules from every molecule of TATP in the solid state.  相似文献   
8.
The method of electrostatic potentials is generalized via a double perturbation theory to describe the simultaneous attack of a large molecule by two or more charged species. The interaction term is found to reproduce accurately the full “super-molecule” calculation. The scheme is illustrated by treating the diprotonation of adenine and N7-methyladenine. For adenine, the most stable diprotonated species is found to be the N1, N7 combination, while the N3, N9 couple is predicted for the N7 substituted derivative if N3 is the first protonation site.  相似文献   
9.
PDZ domains are important scaffolding modules that typically bind to the C-termini of their interaction partners. Several structures of such complexes have been solved, revealing a conserved binding site in the PDZ domain and an extended conformation of the bound peptide. A compendium of information regarding PDZ complexes demonstrates that dissimilar C-terminal peptides bind to the same PDZ domain, and different PDZ domains can bind the same peptides. A detailed understanding of the PDZ-peptide recognition is needed to elucidate this complexity. To this end, we have designed a family of docking protocols for PDZ domains (termed PDZ-DocScheme) that is based on simulated annealing molecular dynamics and rotamer optimization, and is applicable to the docking of long peptides (20-40 rotatable bonds) to both known PDZ structures and to the more complicated problem of homology models of these domains. The resulting protocol reproduces the structures of PDZ complexes with peptides 4-8 amino acids long within 1-2 A from the experimental structure when the docking is performed to the original structure. If the structure of the target PDZ domain is an apo structure or a homology model, the docking protocol yields structures within 3 A in 9 out of 12 test cases. The automated docking procedure PDZ-DocScheme can serve in the generation of a structural context for validation of PDZ domain specificity from mutagenesis and ligand binding data.  相似文献   
10.
In this article, Multi‐Walled Carbon Nanotubes (MWCNTs) of varying diameters, both untreated and polycarboxylated, were dispersed at constant weight percentage in an epoxy matrix, and resulting fracture toughnesses (KIc) were measured in each case. We show that changing the MWCNT diameter has two effects on the composite fracture toughness: (i) a small MWCNT diameter enables larger interfacial surface for adhesion maximization, which increases toughness; (ii) at the same time, it limits the available pull‐out energy and reduces the MWCNT ability to homogeneously disperse in the matrix due to this same large active surface: this decreases toughness. Most commercially available MWCNTs have a length range of several μm, thus an optimal diameter exists which depends on MWCNT wall thickness and surface treatment. Such optimal diameter maximizes pull‐out energy and thus composite fracture toughness. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号