首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16315篇
  免费   2732篇
  国内免费   3071篇
化学   13296篇
晶体学   295篇
力学   973篇
综合类   172篇
数学   1623篇
物理学   5759篇
  2024年   25篇
  2023年   342篇
  2022年   494篇
  2021年   646篇
  2020年   762篇
  2019年   812篇
  2018年   661篇
  2017年   675篇
  2016年   792篇
  2015年   821篇
  2014年   992篇
  2013年   1279篇
  2012年   1421篇
  2011年   1464篇
  2010年   1142篇
  2009年   1025篇
  2008年   1107篇
  2007年   910篇
  2006年   921篇
  2005年   860篇
  2004年   708篇
  2003年   626篇
  2002年   619篇
  2001年   570篇
  2000年   404篇
  1999年   348篇
  1998年   233篇
  1997年   171篇
  1996年   197篇
  1995年   155篇
  1994年   145篇
  1993年   147篇
  1992年   105篇
  1991年   117篇
  1990年   79篇
  1989年   66篇
  1988年   42篇
  1987年   33篇
  1986年   38篇
  1985年   33篇
  1984年   19篇
  1983年   23篇
  1982年   13篇
  1981年   9篇
  1980年   8篇
  1976年   8篇
  1975年   6篇
  1973年   7篇
  1972年   5篇
  1936年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
In this paper, the problem of the uniform stability for a class of fuzzy fractional-order genetic regulatory networks with random discrete delays, distributed delays, and parameter uncertainties is studied. Although there is a portion of literature on using fixed point theorems to study the stability of fractional neural networks, most of them required the fractional order to be in 1 2 , 1 . However, the case of the fractional-order belonging to ( 0 , 1 2 ) has not been discussed. To solve it, this work proposes a novel idea of using fixed point theory to study the stability of fuzzy (0,1) order neural networks, the problem of the uniqueness of the solution of the considered genetic regulatory networks is resolved, and a novel sufficient condition to guarantee the uniform stability of above genetic regulatory networks is also derived. Eventually, an example is given to demonstrate that the obtained result is effective.  相似文献   
2.
Photocatalytic CO2 reduction to C1 fuels is considered to be an important way for alleviating increasingly serious energy crisis and environmental pollution. Due to the environment-friendly, simple preparation, easy formation of highly-stable metal-nitrogen(M-Nx) coordination bonds, and suitable band structure, polymeric carbon nitride-based single-atom catalysts(C3N4-based SACs) are expected to become a potential for CO2 reduction under visible-light irradiation. In this review, we summarize the recent advancement on C3N4-based SACs for photocatalytic CO2 reduction to C1 products, including the reaction mechanism for photocatalytic CO2 reduction to C1 products, the structure and synthesis methods of C3N4-based SACs and their applications toward photocatalytic CO2 reduction reaction(CO2RR) for C1 production. The current challenges and future opportunities of C3N4-based SACs for photoreduction of CO2 are also discussed.  相似文献   
3.
Czechoslovak Mathematical Journal - It is well known that people can derive the radiation MHD model from an MHD-P1 approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform...  相似文献   
4.
International Journal of Theoretical Physics - Quantum logic gates are the foundation of circuit-based quantum computation and quantum simulation. Multi-qubit quantum controlled gates are of vital...  相似文献   
5.
在热力学中,关于多元系的化学势的变量集,有互不一致的两种结论.一种结论认为,某种物质的化学势,仅仅依赖于其它物质的存在,另外一种认为,不仅依赖于其它物质,也依赖于自己.本文通过详细的分析论证了,一般而言,化学势依赖于系统内的所有物质.  相似文献   
6.
Yuan  Xin  Zhang  Shuren  Zhong  Xuanmeng  Yuan  Hao  Song  Dongfan  Wang  Xiaoyu  Yu  Hanyang  Guo  Zijian 《中国科学:化学(英文版)》2022,65(10):1978-1984
Science China Chemistry - Oncogenic KRAS reprograms pancreatic ductal adenocarcinoma (PDAC) cells to a state that is awfully resistant to apoptosis. An alternative coping strategy is to trigger a...  相似文献   
7.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
8.
Because of its unpredictable side effects and efficacy, the anticancer drug docetaxel (DTX) requires improved characterisation of its pharmacokinetic profiles through population pharmacokinetic studies. A sensitive and rugged LC–MS/MS method for the detection of DTX in human plasma was developed and optimised using paclitaxel as an internal standard (IS). The plasma samples underwent rapid extraction using hybrid solid-phase extraction-protein precipitation. The analyte and IS were separated with an isocratic system on a Zorbax Eclipse Plus C18 column using water containing 0.05% acetic acid along with 20 μM of sodium acetate and methanol (30/70, v/v) as the mobile phase. Quantification was performed using a triple quadrupole mass spectrometer through multiple reaction monitoring in positive mode, using the m/z 830.3 → 548.8 and m/z 876.3 → 307.7 transitions for DTX and paclitaxel, respectively. The range of the calibration curve was 1–500 ng/mL for DTX, and the linear correlation coefficient was >0.99. The accuracies ranged from −4.6 to 4.2%, and the precision was no higher than 7.0% for the analytes. No significant matrix effect was observed. Both DTX and the IS showed considerable recovery. This method was finally applied to the establishment of a population pharmacokinetic model to optimise the clinical use of DTX.  相似文献   
9.
Our previous discovery suggested that substituents on the 1,7 positions delicately modulate the sensing ability of the meso-arylmercapto boron-dipyrromethene (BODIPY) to biothiols. In this work, the impact of delicate modulations on the sensing ability is investigated. Therefore, 1,7-dimethyl, 3,5-diaryl substituted BODIPY is designed and developed and its conformationally restricted species with a meso-arylmercapto moiety ( DM-BDP-SAr and DM-BDP-R-SAr ) as selective fluorescent probes for Cys. Moreover, the lysosome-target probes ( Lyso-S and Lyso-D ) based on DM-BDP-SAr carrying one or two morpholinoethoxy moieties were developed. They were able to detect Cys selectively in vitro with low detection limits. Both Lyso-S and Lyso-D localized nicely in lysosomes in living HeLa cells and exhibited red fluorescence for Cys. Moreover, a novel fluorescence quenching mechanism was proposed from the calculations by density functional theory (DFT). The probes may go through intersystem crossing (from singlet excited state to triplet excited state) to result in fluorescence quenching.  相似文献   
10.
We proposed an electro-optic modulator with two-bus one-ring (TBOR) structure to improve the extinction ratio and reduce insert loss. It has a dual output compared with one-bus one-ring structure. In addition, double-layer graphene makes it possible for the modulation in the visible to mid-infrared wavelength range. It shows that this new electro-optic modulator can present two switching states well with low insertion loss, high absorption and high extinction ratio. At λ=1550 nm, when the switching states are based on the chemical potential, μc=0.38 eV and μc=0.4 eV, the insertion losses of both output ports are less than 2 dB, the absorption of the output port coupled via a micro-ring reaches 45 dB and the extinction ratio reaches 14 dB. When the refractive index of the dielectric material is 4.2, the applied voltage will be less than 1.2 V, thus can be used in low-voltage CMOS technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号