首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
化学   8篇
物理学   1篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有9条查询结果,搜索用时 281 毫秒
1
1.
2.
The ability to control electronic tunneling in complex molecular networks of multiple donor/acceptor sites is studied theoretically. Our past analysis, demonstrating the phenomenon of site-directed transport, was limited to the coherent tunneling regime. In this work we consider electronic coupling to a dissipative molecular environment including the effect of decoherence. The nuclear modes are classified into two categories. The first kind corresponds to the internal molecular modes, which are coupled to the electronic propagation along the molecular bridges. The second kind corresponds to the external solvent modes, which are coupled to the electronic transport between different segments of the molecular network. The electronic dynamics is simulated within the effective single electron picture in the framework of the tight binding approximation. The nuclear degrees of freedom are represented as harmonic modes and the electronic-nuclear coupling is treated within the time-dependent Redfield approximation. Our results demonstrate that site-directed tunneling prevails in the presence of dissipation, provided that the decoherence time is longer than the time period for tunneling oscillations (e.g., at low temperatures). Moreover, it is demonstrated that the strength of electronic coupling to the external nuclear modes (the solvent reorganization energy) controls the coherent intramolecular tunneling dynamics at short times and may be utilized for the experimental control of site-directed tunneling in a complex network.  相似文献   
3.
The Landauer-type formulation of current through a molecular junction with electronic-nuclear coupling introduced by Troisi et al. [J. Chem. Phys. 118, 6072 (2003)] is generalized to account for the dependence of the molecule-leads coupling terms on the nuclear coordinates. Although this electronic-nuclear coupling is external to the molecule there is no need to extend the molecular subspace when projection operators are employed for calculations of the current through the junction. A test case of a conductor with vibrating contacts to the leads is studied numerically. It is demonstrated that contact vibrations lead to inelastic contributions to the current and to characteristic features in the I-V curve and its derivatives, similar to the ones observed for internal (molecular) electronic-nuclear coupling.  相似文献   
4.
Shasha  H.  Yatom  N.  Prill  M.  Zaffran  J.  Biswas  S.  Aurbach  D.  Toroker  M. Caspary  Ein-Eli  Y. 《Journal of Solid State Electrochemistry》2019,23(11):3209-3216
Journal of Solid State Electrochemistry - A major challenge in the field of rechargeable Mg batteries is the development of high voltage/high capacity cathode materials. Naturally, a first step in...  相似文献   
5.
Hematite has been widely studied for catalytic water splitting, but the role of the interactions between catalytic sites is unknown. In this paper, we calculate the oxygen evolution reaction free energies and the surface adsorption distribution using a combination of density functional theory and Monte Carlo simulations to “cover the waterfront,” or cover a wide range of properties with a simulation of the hematite surface under working conditions. First, we show that modeling noninteracting catalytic sites provides a poor explanation of hematite's slow reaction kinetics. The interactions between the catalytic site may hinder catalysis through the strong interactions of *OH2 and *OOH intermediates, which cause the reaction to revert back to the *O intermediate. Hence, neighboring interactions may be a possible reason for the abundant, experimentally observed *O intermediate on the surface. This study demonstrates how neighboring sites impact the energy required for catalytic steps, thus providing new avenues to improve catalysis by controlling neighboring site interactions.  相似文献   
6.
A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule, nanosecond laser pulses into femtosecond pulses, to produce exawatt-and-beyond peak power. In the future, C3 could be used at large-scale facilities such as the National Ignition Facility (NIF) or the Laser Megajoule (LMJ) and open the way to zettawatt level pulses. The beam will be focused to a wavelength spot size with a f#1. The very small beam size, i.e. few centimeters, along with the low laser repetition rate laser system will make possible the use of inexpensive, precision, disposable optics. The resulting intensity will approach the Schwinger value, thus opening up new possibilities in fundamental physics.  相似文献   
7.
8.
Iron cations are essential for the high activity of nickel and cobalt‐based (oxy)hydroxides for the oxygen evolution reaction, but the role of iron in the catalytic mechanism remains under active investigation. Operando X‐ray absorption spectroscopy and density functional theory calculations are used to demonstrate partial Fe oxidation and a shortening of the Fe?O bond length during oxygen evolution on Co(Fe)OxHy. Cobalt oxidation during oxygen evolution is only observed in the absence of iron. These results demonstrate a different mechanism for water oxidation in the presence and absence of iron and support the hypothesis that oxidized iron species are involved in water‐oxidation catalysis on Co(Fe)OxHy.  相似文献   
9.
The positions of electronic band edges are one important metric for determining a material's capability to function in a solar energy conversion device that produces fuels from sunlight. In particular, the position of the valence band maximum (conduction band minimum) must lie lower (higher) in energy than the oxidation (reduction) reaction free energy in order for these reactions to be thermodynamically favorable. We present first principles quantum mechanics calculations of the band edge positions in five transition metal oxides and discuss the feasibility of using these materials in photoelectrochemical cells that produce fuels, including hydrogen, methane, methanol, and formic acid. The band gap center is determined within the framework of DFT+U theory. The valence band maximum (conduction band minimum) is found by subtracting (adding) half of the quasiparticle gap obtained from a non-self-consistent GW calculation. The calculations are validated against experimental data where possible; results for several materials including manganese(ii) oxide, iron(ii) oxide, iron(iii) oxide, copper(i) oxide and nickel(ii) oxide are presented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号