首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   2篇
化学   70篇
物理学   3篇
  2023年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2012年   7篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   9篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1988年   2篇
  1985年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有73条查询结果,搜索用时 328 毫秒
1.
Using well-cycled, thin composite graphite electrodes we analyze carefully the limitations of potentiostatic and galvanostatic intermittent titration techniques (PITT and GITT, respectively) for determination of the differential (incremental) intercalation capacitance, Cdif, and the chemical diffusion coefficient, D, of Li ions in these ion-insertion electrodes (IIEs). We demonstrate the superiority of the GITT over PITT to determine these quantities as the former technique allows for a more accurate determination of Cdif and hence D which closely approach to the spinodal domain related to the first-order phase transition during ion-insertion. We show that GITT is also more effective in eliminating the parasitic contributions of background currents to the total measured response. A pronounced difference in the initial, intrinsic kinetics of formation of a new phase in the bulk of the old one has been observed depending on the direction of titration (phases less saturated with Li are formed faster during deintercalation than the Li-rich phases in the course of intercalation).  相似文献   
2.
A crystallographic approach was applied to elucidate the influence of the nature of the surface films on the electrochemical behavior of Li and Mg intercalation compounds. This paper presents two examples: (1) protection of graphite electrodes by Li2CO3 surface films, and (2) the unique electrochemical behavior of Mg-containing Chevrel phases (MgCP) obtained by different synthetic routes. In the former case, the elucidation of the protection mechanism and the explanation of the high performance of such protected electrodes are based on the analysis of possible Li-ion motion in the carbonate crystal structure. In the latter case, a combination of synthesis, electrochemistry and XRD analysis was used to explain an unusual phenomenon: the difference between the excellent electrochemical behavior of the Chevrel phase (CP) based on Cu-leached Cu2Mo6S8 (CuCP), and the poor electrochemical activity of the high-temperature synthesized MgCP, with the same phase composition. It is shown that this phenomenon is caused by MgO formation on the surface of the latter material. The different surface chemistry of the MgCPs obtained by the two different synthetic routes was substantiated by revealing the correlation between the electrochemical activity and the chemical stability of these materials under ambient atmosphere conditions. Dedicated to Prof. Mikhail A. Vorotyntsev on the occasion of his 60th birthday.  相似文献   
3.
The Chevrel phase (CP), Mo6S8, was found to be an excellent cathode material for rechargeable magnesium batteries. Mo6S8 is obtained by a leaching process of Cu2Mo6S8, which removes the copper. A new method of Cu2Mo6S8 production was developed. In contrast to the well-known solid-state synthesis of CP, the method is based on the reaction in a molten salt media (KCl). A fast kinetics of this reaction allows using less active, but more convenient precursors (sulfides instead of sulfur), decreasing temperature and synthesis duration, as well as operation in the inert atmosphere instead of dynamic evacuated systems. It was shown that the composition and the electrochemical behavior of the products obtained by MSS and by the solid-state synthesis are identical. Thus, the molten salt method is extremely attractive for the large-scale production of the active materials for Mg batteries.  相似文献   
4.
Electrochemical impedance spectroscopy is used to characterize thin p-doped polypyrrole (PPy) films in propylene carbonate (PC) solutions and poly(trifluorophenyl)thiophene (PTFPT), in solutions based on sulfolane (SF). It appears that the latter film is much less swelled compared to the former one. One consequence of this difference is that the PTFPT film shows a much higher bulk resistance compared to that for the PPy film. Another important consequence is that the swelling of the PTFPT film is essentially physically non-homogeneous. Two parallel, uncoupled paths, with different chemical diffusion coefficients, model the experimental results adequately. In order to quantify the impedance spectra for both polymer films, we use a model proposed by Rubinstein et al. explaining the difference in the diffusion coefficients of Ru(bpy)3+/2+ 3 within a thin Nafion film. The model can also predict the impedance spectra for composite powdery electrodes containing different particle sizes, such as composite cathodes and graphite anodes used in lithium batteries.  相似文献   
5.
Thermodynamic instability of positive electrodes (cathodes) in Li-ion batteries in humid air and battery solutions results in capacity fading and batteries degradation, especially at elevated temperatures. In this work, we studied thermal interactions between cathode materials Li2MnO3, xLi2MnO3 .(1???x)Li(MnNiCo)O2,LiNi0.33Mn0.33Co0.33O2, LiNi0.4Mn0.4Co0.2O2, LiNi0.8Co0.15Al0.05O2 LiMn1.5Ni0.5O4, LiMn(or Fe)PO4, and battery solutions containing ethylene carbonate (EC) or propylene carbonate (PC), dimethyl carbonate (DMC) or ethylmethyl carbonate (EMC) and LiPF6 salt in the temperature range of 40–400 °C. It was found that these materials are stable chemically and well performing in LiPF6-based solutions up to 60 °C. The thermal decomposition of the electrolyte solutions starts >180 °C. The macro-structural transformations of cathode materials upon exothermic reactions were studied by transmission electron microscopy (TEM), X-ray difraction (XRD) and Raman spectroscopy. Differential scanning calorimetry (DSC) studies have shown that the exothermic reactions in the temperature range of 60–140 °C lead to partial decomposition of both the cathode material and electrolyte solution. The systems thus formed consisted of partially decomposed solutions and partially chemically delithiated cathode materials covered by reactions products. Thermal reactions terminate and this system reaches equilibrium at about 120 °C. It remains stable up to the beginning of the solution decomposition at about 180 °C. The increased content of surface Li2CO3 is found to significantly affect the thermal processes at high temperature range due to extensive exothermic decomposition at low temperatures.  相似文献   
6.
The most intriguing feature of metal–metal bonds in inorganic compounds is an apparent lack of correlation between the bond order and the bond length. In this study, we combine a variety of literature data obtained by quantum chemistry and our results based on the empirical bond valence model (BVM), to confirm for the first time the existence of a normal exponential correlation between the effective bond order (EBO) and the length of the metal–metal bonds. The difference between the EBO and the formal bond order is attributed to steric conflict between the (TM)n cluster (TM=transition metal) and its environment. This conflict, affected mainly by structural type, should cause high lattice strains, but electron redistribution around TM atoms, evident from the BVM calculations, results in a full or partial strain relaxation.  相似文献   
7.
8.
To determine the mechanism responsible for the formation of electrolytic sodium–vanadium oxide bronze e-Na x V2O5, synthesized earlier from acid vanadyl sulfate electrolyte, -bronze i-Na x V2O5is synthesized by exposing electrolytic oxide e-V2O5in the same sodium-containing electrolyte under open-circuit conditions, with a subsequent annealing of the sample. It is established that the two modifications of -bronze (e-Na x V2O5and i-Na x V2O5) are identical and that electrolytic precursors of -bronze Na x V2O5form via an ion-exchange mechanism.  相似文献   
9.
Most of TM6-cluster compounds (TM = transition metal) are soluble in polar solvents, in which the cluster units commonly remain intact, preserving the same atomic arrangement as in solids. Consequently, the redox potential is often used to characterize structural and electronic features of respective solids. Although a high lability and variety of ligands allow for tuning of redox potential and of the related spectroscopic properties in wide ranges, the mechanism of this tuning is still unclear. Crystal chemistry approach was applied for the first time to clarify this mechanism. It was shown that there are two factors affecting redox potential of a given metal couple: Lever’s electrochemical parameters of the ligands and the effective ionic charge of TM, which in cluster compounds differs effectively from the formal value due to the bond strains around TM atoms. Calculations of the effective ionic charge of TMs were performed in the framework of bond valence model, which relates the valence of a bond to its length by simple Pauling relationship. It was also shown that due to the bond strains the charge depends mainly on the atomic size of the inner ligands.  相似文献   
10.
Journal of Solid State Electrochemistry - Silicon is considered to be a very attractive anode material for next-generation lithium-ion batteries due to its high theoretical capacity...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号