首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   770篇
  免费   22篇
  国内免费   3篇
化学   671篇
晶体学   2篇
力学   9篇
数学   34篇
物理学   79篇
  2023年   4篇
  2021年   3篇
  2020年   11篇
  2019年   14篇
  2018年   12篇
  2017年   5篇
  2016年   10篇
  2015年   18篇
  2014年   15篇
  2013年   37篇
  2012年   44篇
  2011年   50篇
  2010年   21篇
  2009年   22篇
  2008年   68篇
  2007年   49篇
  2006年   51篇
  2005年   53篇
  2004年   52篇
  2003年   40篇
  2002年   27篇
  2001年   22篇
  2000年   11篇
  1999年   11篇
  1998年   3篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   8篇
  1990年   9篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   11篇
  1984年   16篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   5篇
  1978年   7篇
  1977年   3篇
  1976年   5篇
  1975年   2篇
  1974年   4篇
  1967年   1篇
  1965年   1篇
排序方式: 共有795条查询结果,搜索用时 57 毫秒
1.
Corrective matrix that is derived to restore consistency of discretization schemes can significantly enhance accuracy for the inside particles in the Moving Particle Semi‐implicit method. In this situation, the error due to free surface and wall boundaries becomes dominant. Based on the recent study on Neumann boundary condition (Matsunaga et al, CMAME, 2020), the corrective matrix schemes in MPS are generalized to straightforwardly and accurately impose Neumann boundary condition. However, the new schemes can still easily trigger instability at free surface because of the biased error caused by the incomplete/biased neighbor support. Therefore, the existing stable schemes based on virtual particles and conservative gradient models are applied to free surface and nearby particles to produce a stable transitional layer at free surface. The new corrective matrix schemes are only applied to the particles under the stable transitional layer for improving the wall boundary conditions. Three numerical examples of free surface flows demonstrate that the proposed method can help to reduce the pressure/velocity fluctuations and hence enhance accuracy further.  相似文献   
2.
Selective two-electron reduction of dioxygen (O2) to hydrogen peroxide (H2O2) has been achieved by two saddle-distorted N,N’-dimethylated porphyrin isomers, an N21,N’22-dimethylated porphyrin ( anti -Me2P ) and an N21,N’23-dimethylated porphyrin ( syn -Me2P ) as catalysts and ferrocene derivatives as electron donors in the presence of protic acids in acetonitrile. The higher catalytic performance in an oxygen reduction reaction (ORR) was achieved by anti -Me2P with higher turnover number (TON=250 for 30 min) than that by syn -Me2P (TON=218 for 60 min). The reactive intermediates in the catalytic ORR were confirmed to be the corresponding isophlorins ( anti -Me2Iph or syn -Me2Iph ) by spectroscopic measurements. The rate-determining step in the catalytic ORRs was concluded to be proton-coupled electron-transfer reduction of O2 with isophlorins based on kinetic analysis. The ORR rate by anti -Me2Iph was accelerated by external protons, judging from the dependence of the observed initial rates on acid concentrations. In contrast, no acceleration of the ORR rate with syn -Me2Iph by external protons was observed. The different mechanisms in the O2 reduction by the two isomers should be derived from that of the arrangement of hydrogen bonding of a O2 with inner NH protons of the isophlorins.  相似文献   
3.
The design and synthesis of a tweezer-shaped naphthalenediimide (NDI)–anthracene conjugate ( 2NDI ) are reported. In the structure of the closed form (πNDI ⋅⋅⋅ πNDI stack) of 2NDI , which was elucidated by single-crystal XRD, the existence of C−H ⋅⋅⋅ O hydrogen bonding involving the nearest carbonyl oxygen atom of an NDI unit was suggested. The tunability of πNDI ⋅⋅⋅ πNDI interactions was studied by means of UV/Vis absorption, fluorescence and NMR spectroscopy and molecular modelling. This revealed that the πNDI ⋅⋅⋅ πNDI interactions in 2NDI affect the absorption and emission properties depending on the temperature. Furthermore, in polar solvents, 2NDI prefers the stronger πNDI ⋅⋅⋅ πNDI stack, whereas the πNDI ⋅⋅⋅ πNDI interaction is diminished in nonpolar solvents. Importantly, the conformational variations of 2NDI can be reversibly switched by variation in temperature, and this suggests potential application for fluorogenic molecular switches upon temperature changes.  相似文献   
4.
At the redox-active center of thioredoxin reductase (TrxR), a selenenyl sulfide (Se−S) bond is formed between Cys497 and Sec498, which is activated into the thiolselenolate state ([SH,Se]) by reacting with a nearby dithiol motif ([SHCys59,SHCys64]) present in the other subunit. This process is achieved through two reversible steps: an attack of a cysteinyl thiol of Cys59 at the Se atom of the Se−S bond and a subsequent attack of a remaining thiol at the S atom of the generated mixed Se−S intermediate. However, it is not clear how the kinetically unfavorable second step progresses smoothly in the catalytic cycle. A model study that used synthetic selenenyl sulfides, which mimic the active site structure of human TrxR comprising Cys497, Sec498, and His472, suggested that His472 can play a key role by forming a hydrogen bond with the Se atom of the mixed Se−S intermediate to facilitate the second step. In addition, the selenenyl sulfides exhibited a defensive ability against H2O2-induced oxidative stress in cultured cells, which suggests the possibility for medicinal applications to control the redox balance in cells.  相似文献   
5.
6.
For self-interstitial atom (SIA) clusters in various concentrated alloys, one-dimensional (1D) migration is induced by electron irradiation around 300 K. But at elevated temperatures, the 1D migration frequency decreases to less than one-tenth of that around 300 K in iron-based bcc alloys. In this study, we examined mechanisms of 1D migration at elevated temperatures using in situ observation of SUS316L and its model alloys with high-voltage electron microscopy. First, for elevated temperatures, we examined the effects of annealing and short-term electron irradiation of SIA clusters on their subsequent 1D migration. In annealed SUS316L, 1D migration was suppressed and then recovered by prolonged irradiation at 300 K. In high-purity model alloy Fe-18Cr-13Ni, annealing or irradiation had no effect. Addition of carbon or oxygen to the model alloy suppressed 1D migration after annealing. Manganese and silicon did not suppress 1D migration after annealing but after short-term electron irradiation. The suppression was attributable to the pinning of SIA clusters by segregated solute elements, and the recovery was to the dissolution of the segregation by interatomic mixing under electron irradiation. Next, we examined 1D migration of SIA clusters in SUS316L under continuous electron irradiation at elevated temperatures. The 1D migration frequency at 673 K was proportional to the irradiation intensity. It was as high as half of that at 300 K. We proposed that 1D migration is controlled by the competition of two effects: induction of 1D migration by interatomic mixing and suppression by solute segregation.  相似文献   
7.
8.
We have studied three-dimensional (3D) structures and growth processes of 14H-type long-period stacking order (LPSO) formed in Mg97Zn1Gd2 cast alloys by single tilt-axis electron tomography (ET) using high-angle annular dark-field scanning transmission electron microscopy. Evolution of the solute-enriched stacking faults (SFs) and the 14H LPSO by ageing were visualised in 3D with a high spatial resolution in multi-scale fields of views from a few nanometres to ~10 μm. Lateral growth of the solute-enriched SFs and the LPSO in the (0?0?0?1)Mg plane is notable compared to the out-of-plane growth in the [0?0?0?1]Mg direction. The 14H LPSO grows at the cost of decomposition of the (Mg, Zn)3Gd-type precipitates, and accompany a change of in-plane edge angles from 30 to 60°. We have updated the Time–Temperature–Transformation diagram for precipitation in Mg97Zn1Gd2 alloys: starting temperatures of both solute-enriched SFs and LPSO formation shifted to a shorter time side than those in the previous diagram.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号