首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2022年   1篇
  2003年   4篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
Journal of Thermal Analysis and Calorimetry - The determination of the thermo-physical properties (density, specific heat capacity, and thermal conductivity) of hygroscopic and reactive solid...  相似文献   
2.
Following a bottom-up approach to nanomaterials, we present a rational synthetic route to high-spin and anisotropic molecules based on hexacyanometalate [M(CN)(6)](3-) cores. Part 1 of this series was devoted to isotropic heptanuclear clusters; herein, we discuss the nuclearity and the structural anisotropy of nickel(II) derivatives. By changing either the stoichiometry, the nature of the terminal ligand, or the counterion, it is possible to tune the nuclearity of the polynuclear compounds and therefore to control the structural anisotropy. We present the synthesis and the characterisation by mass spectrometry, X-ray crystallography and magnetic susceptibility of bi-, tri-, tetra-, hexa- and heptanuclear species [M(CN)(n)(CN-M'L)(6-n)](m+) (with n=0-5; M=Cr(III), Co(III), M'=Ni(II); L=pentadentate ligand). Thus, with M=Cr(III), d(3), S=3/2, a dinuclear complex [Cr(III)(CN)(5)(CN-NiL(n))](9+), (L(n)=polydentate ligand) was built and characterised, showing a spin ground state, S(G)=5/2, with a ferromagnetic interaction J(Cr,Cu)=+18.5 cm(-1). With M=Co(III) (d(6), S=0) were built di-, tri-, tetra-, hexa and hepanuclear CoNi species: CoNi, CoNi(2), CoNi(3), CoNi(5) and CoNi(6). By a first approximation, they behave as one, two, three, five and six isolated nickel(II) complexes, respectively, but more accurate studies allow us to evaluate the weak antiferromagnetic coupling constant between two next-nearest neighbours M'-Co-M'.  相似文献   
3.
 This paper points out some recent achievements in the chemistry and physics of high spin and anisotropic molecules based on polycyanometalate complexes. Following a step by step synthetic strategy and using a localized electron orbital model, isotropic high spin molecules were obtained with ground spin states ranging from S = 9/2 to 27/2. In the same way, anisotropic molecules with various nuclearities (bi, tri, tetra, hexa, and hepta-nuclear complexes) have been synthesized. Mixing these two approaches, it has been possible to obtained anisotropic high spin molecules that behave as single molecule magnets. The paper reviews some of the steps that lead to these findings and some of the prospects opened in the field of single molecule magnets.  相似文献   
4.
 This paper points out some recent achievements in the chemistry and physics of high spin and anisotropic molecules based on polycyanometalate complexes. Following a step by step synthetic strategy and using a localized electron orbital model, isotropic high spin molecules were obtained with ground spin states ranging from S = 9/2 to 27/2. In the same way, anisotropic molecules with various nuclearities (bi, tri, tetra, hexa, and hepta-nuclear complexes) have been synthesized. Mixing these two approaches, it has been possible to obtained anisotropic high spin molecules that behave as single molecule magnets. The paper reviews some of the steps that lead to these findings and some of the prospects opened in the field of single molecule magnets. Corresponding author. E-mail: marvaud@ccr.jussieu.fr Received July 19, 2002; accepted July 23, 2002  相似文献   
5.
Following a bottom-up approach to nanomaterials, we present a rational synthetic route from hexacyanometalates [M(CN)(6)](3-) (M=Cr(III), Co(III)) cores to well-defined heptanuclear complexes. By changing the nature of the metallic cations and using a localised orbital model it is possible to control and to tune the ground state spin value. Thus, with M=Cr(III), d(3), S=3/2, three heptanuclear species were built and characterised by mass spectrometry in solution, by single-crystal X-ray diffraction and by powder magnetic susceptibility measurements, [Cr(III)(CNbondM'L(n))(6)](9+) (M'=Cu(II), Ni(II), Mn(II), L(n)=polydentate ligand), showing spin ground states S(G)=9/2 [Cu(II)], with ferromagnetic interactions J(Cr,Cu)=+45 cm(-1), S(G)=15/2 [Ni(II)] and J(Cr,Ni)=+17.3 cm(-1), S(G)=27/2 [Mn(II)], with an antiferromagnetic interaction J(Cr,Mn)=-9 cm(-1), (interaction Hamiltonian H=-J(Cr,M) [S(Cr)Sigma(i)S(M)(i)], i=1-6). With M=Co(III), d(6), S=0, the heptanuclear analogues [Co(III)(CN-M'L(n))(6)](9+) (M'=Cu(II), Ni(II), Mn(II)) were similarly synthesised and studied. They present a singlet ground state and allow us to evaluate the weak antiferromagnetic coupling constant between two next-nearest neighbours M'-Co-M'.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号