首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   21篇
化学   471篇
晶体学   16篇
力学   12篇
数学   17篇
物理学   112篇
  2023年   4篇
  2021年   7篇
  2020年   12篇
  2019年   22篇
  2018年   15篇
  2017年   14篇
  2016年   14篇
  2015年   9篇
  2014年   19篇
  2013年   22篇
  2012年   25篇
  2011年   25篇
  2010年   18篇
  2009年   16篇
  2008年   42篇
  2007年   28篇
  2006年   38篇
  2005年   38篇
  2004年   37篇
  2003年   24篇
  2002年   22篇
  2001年   7篇
  2000年   13篇
  1999年   4篇
  1998年   3篇
  1997年   9篇
  1996年   9篇
  1995年   5篇
  1994年   8篇
  1993年   9篇
  1992年   9篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   10篇
  1984年   10篇
  1983年   5篇
  1981年   6篇
  1980年   7篇
  1979年   2篇
  1978年   4篇
  1977年   6篇
  1976年   2篇
  1974年   3篇
  1970年   2篇
  1941年   2篇
  1936年   2篇
排序方式: 共有628条查询结果,搜索用时 250 毫秒
1.
Ru is an important catalyst in many types of reactions. Specifically, Ru is well known as the best monometallic catalyst for oxidation of carbon monoxide (CO) and has been practically used in residential fuel cell systems. However, Ru is a minor metal, and the supply risk often causes violent fluctuations in the price of Ru. Performance‐improved and cost‐reduced solid‐solution alloy nanoparticles of the Cu‐Ru system for CO oxidation are now presented. Over the whole composition range, all of the CuxRu1?x nanoparticles exhibit significantly enhanced CO oxidation activities, even at 70 at % of inexpensive Cu, compared to Ru nanoparticles. Only 5 at % replacement of Ru with Cu provided much better CO oxidation activity, and the maximum activity was achieved by 20 at % replacement of Ru by Cu. The origin of the high catalytic performance was found as CO site change by Cu substitution, which was investigated using in situ Fourier transform infrared spectra and theoretical calculations.  相似文献   
2.
Haouamines A, B, and their derivatives were synthesized via Suzuki–Miyaura coupling and three key cyclization reactions as follows: the newly developed palladium(0)-catalyzed arylative cyclization of phenylalanine-derived alkyne–aldehydes with 2-bromoarylboronic acid (an “anti-Wacker”-type cyclization); BF3 ⋅ OEt2-promoted Friedel–Crafts-type cyclization of symmetrical electron-rich aromatic rings adjacent to a tertiary allylic alcohol leading to the indeno-tetrahydropyridine skeleton; and (cyanomethyl)trimethylphosphonium iodide-mediated macrocyclization of amino alcohols to afford aza-paracyclophane precursors. The palladium-catalyzed reduction of mono- and di-triflate intermediates in the later stages enabled the alteration of both the position and number of hydroxyl groups on the C-ring. The instability of haouamine B was dramatically improved by salt formation with formic acid. An unambiguous evaluation of the cytotoxicity of the prepared haouamine derivative formates with and without hydroxyl groups at different positions on the C-ring indicated that the catechol structure in haouamine B produced weak cytotoxicity.  相似文献   
3.
Bis-phosphanated compounds are regarded as the most ubiquitous privileged ligand structures in transition-metal catalysis. The development of highly atom economical reactions is of great importance for their syntheses because less atom economical methods often require complicated purification procedures under inert atmospheres to remove excess starting materials and byproducts. Herein, the photoinduced addition reactions of diphosphane monosulfides bearing PV(S)−PIII single bonds to alkenes is disclosed. These reactions require only equimolar amounts of the diphosphane monosulfide relative to the alkene and facilitate highly selective introduction of two different types of phosphorus-containing groups, such as thiophosphoryl and phosphanyl groups, into a variety of alkenes without any catalyst, base, or additive.  相似文献   
4.
Understanding the details of the electronic structure in face‐to‐face arranged tetrathiafulvalenes (TTFs) is very important for the design of supramolecular functional materials and superior conductive organic materials. This article is a comprehensive study of the interactions among columnar stacked TTFs using trimeric (trimer) and tetrameric (tetramer) TTFs linked by alkylenedithio groups (‐S(CH2)nS‐, n=1–4) as models of triple‐ and quadruple‐decker TTF arrays. Single‐crystal X‐ray analyses of neutral trimeric TTFs revealed that the three TTF moieties are oriented in a zigzag arrangement. Cyclic voltammetry measurements (CV) reveal that the trimer and tetramer exhibited diverse reversible redox processes with multi‐electron transfers, depending on the length of the ‐S(CH2)nS‐ units and substituents. The electronic spectra of the radical cations, prepared by electrochemical oxidation, showed charge resonance (CR) bands in the NIR/IR region (1630–1850 nm), attributed to a mixed valence (MV) state of the triple‐ and quadruple‐decker TTF arrays. In the trimeric systems, the dicationic state (+2; 0.66 cation per TTF unit) was found to be a stable state, whereas the monocationic state (+1) was not observed in the electronic spectra. In the tetrameric system, substituent‐dependent redox processes were observed. Moreover, π‐trimers and π‐tetramers, which show a significant Davydov blueshift in the spectra, are formed in the tricationic (trimer) and tetracationic (tetramer) state. In addition, these attractive interactions are strongly dependent on the length of the linkage unit.  相似文献   
5.
Novel electron donor–acceptor–donor (D-A-D) compounds comprising dibenzo[a,j]phenazine as the central acceptor core and two 7-membered diarylamines (iminodibenzyl and iminostilbene) as the donors have been designed and synthesized. Investigation of their physicochemical properties revealed the impact of C2 insertion into well-known carbazole electron donors on the properties of previously reported twisted dibenzo[a,j]phenazine-core D-A-D triads. Slight structural modification caused a drastic change in conformational preference, allowing unique photophysical behavior of dual emission derived from room-temperature phosphorescence and triplet–triplet annihilation. Furthermore, electrochemical analysis suggested sigma-dimer formation and electrochemical polymerization on the electrode. Quantum chemical calculations also rationalized the experimental results.  相似文献   
6.
A general, rapid, and efficient method for the copper‐catalyzed Finkelstein reaction of (hetero)aromatics has been developed using continuous flow to generate a variety of aryl iodides. The described method can tolerate a broad spectrum of functional groups, including N‐H and O‐H groups. Additionally, in lieu of isolation, the aryl iodide solutions were used in two distinct multistep continuous‐flow processes (amidation and Mg–I exchange/nucleophilic addition) to demonstrate the flexibility of this method.  相似文献   
7.
Simultaneous manipulation of both spin and charge is a crucial issue in magnetic conductors. We report on a strong correlation between magnetism and conductivity in the iodine‐bonded molecular conductor (DIETSe)2FeBr2Cl2 [DIETSe=diiodo(ethylenedithio)tetraselenafulvalene], which is the first molecular conductor showing a large hysteresis in both magnetic moment and magnetoresistance associated with a spin‐flop transition. Utilizing a mixed‐anion approach and iodine bonding interactions, we tailored a molecular conductor with random exchange interactions exhibiting unforeseen physical properties.  相似文献   
8.
The mechanism of turbulent heat transfer in the thermal boundary layer developing in the channel flow of a drag-reducing surfactant solution was studied experimentally. A two-component laser Doppler velocimetry and a fine-wire thermocouple probe were used to measure the velocity and temperature fluctuations simultaneously. Two layers of thermal field were found: a high heat resistance layer with a high temperature gradient, and a layer with a small or even zero temperature gradient. The peak value of was larger for the flow with the drag-reducing additives than for the Newtonian flow, and the peak location was away from the wall. The profile of was depressed in a similar manner to the depression of the profile of in the flow of the surfactant solution, i.e., decorrelation between v and compared with decorrelation between u and v. The depression of the Reynolds shear stress resulted in drag reduction; similarly, it was conjectured that the heat transfer reduction is due to the decrease in the turbulent heat flux in the wall-normal direction for a flow with drag-reducing surfactant additives.List of symbols ensemble averaged value - (·)+ normalized by the inner wall variables - (·) root-mean-square value - C concentration of cetyltrimethyl ammonium chloride (CTAC) solution - c p heat capacity - D hydraulic diameter - f friction factor - H channel height - h heat transfer coefficient - j H Colburn factor - l length - Nu Nusselt number, h - Pr Prandtl number, c p/ - q w wall heated flux - Re Reynolds number, U b/ - T temperature - T b bulk temperature - T i inlet temperature - T w wall temperature - T friction temperature, q w /c p u - U local time-mean streamwise velocity - U 1 velocity signals from BSA1 - U 2 velocity signals from BSA2 - U b bulk velocity - u streamwise velocity fluctuation - u1 velocity in abscissa direction in transformed coordinates - u friction velocity, - v wall-normal velocity fluctuation - v1 velocity in ordinate direction in transformed coordinates - var(·) variance - x streamwise direction - y wall-normal direction - z spanwise direction - j junction diameter of fine-wire TC - w wire diameter of fine-wire TC - angle of principal axis of joint probability function p(u,v) - f heat conduction of fluid - w heat conduction of wire of fine-wire TC - kinematic viscosity - local time-mean temperature difference, T w T - temperature fluctuation - standard deviation - density - w wall shear stress  相似文献   
9.
We report the synthesis of high-entropy-alloy (HEA) nanoparticles (NPs) consisting of five platinum group metals (Ru, Rh, Pd, Ir and Pt) through a facile one-pot polyol process. We investigated the electronic structure of HEA NPs using hard X-ray photoelectron spectroscopy, which is the first direct observation of the electronic structure of HEA NPs. Significantly, the HEA NPs possessed a broad valence band spectrum without any obvious peaks. This implies that the HEA NPs have random atomic configurations leading to a variety of local electronic structures. We examined the hydrogen evolution reaction (HER) and observed a remarkably high HER activity on HEA NPs. At an overpotential of 25 mV, the turnover frequencies of HEA NPs were 9.5 and 7.8 times higher than those of a commercial Pt catalyst in 0.05 M H2SO4 and 1.0 M KOH electrolytes, respectively. Moreover, the HEA NPs showed almost no loss during a cycling test and were much more stable than the commercial Pt catalyst. Our findings on HEA NPs may provide a new paradigm for the design of catalysts.

RuRhPdIrPt high-entropy-alloy nanoparticles with a broad and featureless valence band spectrum show high hydrogen evolution reaction activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号