首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   43篇
  国内免费   1篇
化学   452篇
晶体学   3篇
力学   8篇
数学   14篇
物理学   82篇
  2023年   4篇
  2022年   10篇
  2021年   8篇
  2020年   17篇
  2019年   17篇
  2018年   18篇
  2017年   11篇
  2016年   20篇
  2015年   16篇
  2014年   24篇
  2013年   25篇
  2012年   32篇
  2011年   40篇
  2010年   32篇
  2009年   30篇
  2008年   32篇
  2007年   25篇
  2006年   31篇
  2005年   24篇
  2004年   36篇
  2003年   24篇
  2002年   16篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1994年   4篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1978年   4篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1929年   1篇
  1928年   1篇
排序方式: 共有559条查询结果,搜索用时 31 毫秒
1.
2.
Hydroxylation of lysine, one of posttranslational modifications of proteins, generates 5‐hydroxylysine (Koh) and plays a crucial role in regulating protein functions in cellular activity. We have developed a chemical labeling method of Koh. The 1,2‐aminoalcohol moiety of Koh in synthetic peptide sequences was trapped by an alkyne‐containing benzimidate to form a 2‐oxazoline ring. An additional ammonia treatment process removed the undesirable amidine residue formed between benzimidate and lysine. During the ammonia treatment, the oxazoline residue formed at Koh mainly remained intact, and the ring opening to the amide form was observed for only part of oxazoline, indicating that the chemical labeling is amino acid selective. Azide‐substituted biotin or fluorescent dye was attached to the peptide through Huisgen cycloaddition at Koh and converted into an alkyne‐labeled oxazoline form. The Koh‐labeling assay could provide a platform to enhance proteomic research of lysine hydroxylation.  相似文献   
3.
Silanethione compounds, R2Si=S, have been recognized as highly reactive species. One reliable way to stabilize silanethione is its coordination to transition metal fragments to convert silanethione-coordinated transition metal complexes. Herein, we report the synthesis, structure, and reactivity of a second cationic silanethione tungsten complex [Cp*(OC)3W{S=SiR2(py)}]TFPB (R=Me ( 5 a ), Ph ( 5 b ), Cp*: η5-C5Me5, py: pyridine, and TFPB: [B{3,5-(CF3)2C6H3}4]). Complex 5 was obtained by H abstraction from the Si atom in the corresponding silylsulfanyl complex Cp*(OC)3W(SSiR2H) ( 4 ) with Ph3CTFPB, followed by the addition of pyridine. The reaction of 5 with PhNCS and PMe3 produced [Cp*(OC)3W{SSiR2N(Ph)C(PMe3)2}]TFPB (R=Me ( 6 a ), Ph ( 6 b )) via the elimination of pyridine and the addition of the 1,3-dipolar species PhNC(PMe3)2 ( A ) to the Si atom.  相似文献   
4.
Discovery of a new class of ion intercalation compounds is highly desirable due to its relevance to various electrochemical devices, such as batteries. Herein, we present a new iron–oxalato open framework, which showed reversible Na+ intercalation/extraction. The hydrothermally synthesized K4Na2[Fe(C2O4)2]3 ? 2 H2O possesses one‐dimensional open channels in the oxalato‐bridged network, providing ion accessibility up to two Na+ per the formula unit. The detailed studies on the structural and electronic states revealed that the framework exhibited a solid solution state almost entirely during Na+ intercalation/extraction associated with the reversible redox of Fe. The present work demonstrates possibilities of the oxalato frameworks as tunable and robust ion intercalation electrode materials for various device applications.  相似文献   
5.
A copper‐catalyzed aminoboration of bicyclic alkenes, including oxa‐ and azabenzonorbornadienes, has been developed. With this method, amine and boron moieties are simultaneously introduced at an olefin with exo selectivity. Subsequent stereospecific transformations of the boryl group can provide oxygen‐ and nitrogen‐rich cyclic molecules with motifs that may be found in natural products or pharmaceutically active compounds. Moreover, a catalytic asymmetric variant of this transformation was realized by using a copper complex with a chiral bisphosphine ligand, namely (R,R)‐Ph‐BPE.  相似文献   
6.
Mizoroki‐Heck coupling polymerization of 1,4‐bis[(2‐ethylhexyl)oxy]‐2‐iodo‐5‐vinylbenzene ( 1 ) and its bromo counterpart 2 with a Pd initiator for the synthesis of poly(phenylenevinylene) (PPV) was investigated to see whether the polymerization proceeds in a chain‐growth polymerization manner. The polymerization of 1 with tBu3PPd(Tolyl)Br ( 10 ) proceeded even at room temperature when 5.5 equiv of Cy2NMe (Cy = cyclohexyl) was used as a base, but the molecular weight distribution of PPV was broad. The polymerization of 2 hardly proceeded at room temperature under the same conditions. In the polymerization of 1 , PPV with H at one end and I at the other was formed until the middle stage, and the polymer end groups were converted into tolyl and H in the final stage. The number‐average molecular weight (Mn) did not increase until about 90% monomer conversion and then sharply increased after that, indicating conventional step‐growth polymerization. The occurrence of step‐growth polymerization, not catalyst‐transfer chain‐growth polymerization, may be interpreted in terms of low coordination ability of H‐Pd(II)‐X(tBu3P) (X = Br or I), formed in the catalytic cycle of the Mizoroki‐Heck coupling reaction, to π‐electrons of the PPV backbone; reductive elimination of H‐X from this Pd species with base would take place after diffusion into the reaction mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 543–551  相似文献   
7.
8.
In this paper, Lp estimates for a trilinear operator associated with the Hartree type nonlinearity are proved. Moreover, as application of these estimates, it is proved that after a linear transformation, the Cauchy problem for the Hartree-type equation becomes locally well posed in the Bessel potential and homogeneous Besov spaces under certain regularity assumptions on the initial data. This notion of well-posedness and the functional framework to solve the equation were firstly proposed by Y. Zhou.  相似文献   
9.
10.
For the living ring‐opening polymerization (ROP) of epoxy monomers, the catalytic activity of organic superbases, tert‐butylimino‐tris(dimethylamino)phosphorane, 1‐tert‐butyl‐2,2,4,4,4‐pentakis(dimethylamino)‐2Λ5,4Λ5‐catenadi(phosphazene), 2,8,9‐triisobutyl‐2,5,8,9‐tetraaza‐1‐phosphabicyclo[3.3.3]undecane, and 1‐tert‐butyl‐4,4,4‐tris(dimethylamino)‐2,2‐bis[tris(dimethylamino)phosphoranylidenamino]‐2Λ5,4Λ5‐catenadi(phosphazene) (t‐Bu‐P4), was confirmed. Among these superbases, only t‐Bu‐P4 showed catalytic activity for the ROP of 1,2‐butylene oxide (BO) to afford poly(1,2‐butylene oxide) (PBO) with predicted molecular weight and narrow molecular weight distribution. The results of the kinetic, post‐polymerization experiments, and MALDI‐TOF MS measurement revealed that the t‐Bu‐P4‐catalyzed ROP of BO proceeded in a living manner in which the alcohol acted as the initiator. This alcohol/t‐Bu‐P4 system was applicable to the glycidol derivatives, such as benzyl glycidyl ether (BnGE) and t‐butyl glycidyl ether, to afford well‐defined protected polyglycidols. The α‐functionalized polyethers could be obtained using different functionalized initiators, such as 4‐vinylbenzyl alcohol, 5‐hexen‐1‐ol, and 6‐azide‐1‐hexanol. In addition, the well‐defined cyclic‐PBO and PBnGE were successfully synthesized using the combination of t‐Bu‐P4‐catalyzed ROP and click cyclization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号