首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   9篇
  国内免费   1篇
化学   89篇
力学   2篇
数学   9篇
物理学   50篇
  2023年   1篇
  2022年   3篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   5篇
  2014年   3篇
  2013年   4篇
  2012年   7篇
  2011年   10篇
  2009年   1篇
  2008年   6篇
  2007年   15篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   8篇
  2002年   7篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1990年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   4篇
  1969年   1篇
排序方式: 共有150条查询结果,搜索用时 109 毫秒
1.
2.
Collagen represents one of the most widely used biomaterial for scaffolds fabrication in tissue engineering as it represents the mechanical support of natural tissues. It also provides physical scaffolding for cells and it influences their attachment, growth, and tissue regeneration. Among all fibrillary collagens, type I is considered one of the gold standard for scaffolds fabrication, thanks to its high biocompatibility, biodegradability, and hemostatic properties. It can be extracted by chemical and enzymatic protocols from several collagen‐rich tissues, such as tendon and skin, of different animal species. Both the extraction processes and the manufacturing protocols for scaffolds fabrication provide structural and mechanical changes that can be tuned in order to deeply impact the properties of the final biomaterial. The aim of this review is to discuss the role of X‐rays to study structural changes of type I collagen from fresh collagen‐rich tissues (bovine, equine, fish) to the final scaffolds, with the aim to screen across available collagen sources and scaffolds fabrication protocols to be used in tissue regeneration.  相似文献   
3.
4.
5.
Vigliano  Marco  Bianchera  Annalisa  Bettini  Ruggero  Elviri  Lisa 《Chromatographia》2013,76(23):1761-1766

Two simple and fast C18 and HILIC liquid chromatography–electrospray mass spectrometry methods for the determination of hyaluronic acid (HA) in a mucoadhesive chitosan-based formulation were developed and validated. The performances of both methods were compared in terms of validation parameters and matrix effect. A simple sample preparation method based on sulphuric acid-based degradation was optimized for the detection of HA fragments (i.e. m/z 380 2-mer, m/z 759 4-mer, m/z 1,138 8-mer and m/z 1,518 16-mer). By operating under selected ion-monitoring mode, excellent selectivity towards chitosan fragments was obtained. For validation, good linearity, detection limits (<4 μg mL−1) and precision (RSD % < 16 %) were generally obtained on matrix with both columns. However, HILIC column exhibited improved performances in terms of HA fragment separation and selectivity. By analyzing on the C18 column the chitosan-based formulation and sample extracts from pig mucosa treated with the formulation, matrix effects exhibited a dependence of signal suppression degree (ranging from 37 to 83 %) as a function of the HA fragment dimension. The HILIC column afforded instead a significantly reduced suppression degree (ranging from 1 to 16 %) and a better separation. These findings demonstrated the improved performances of the HILIC column with respect to conventional C18 mechanism for the analysis of HA fragments in complex matrices.

  相似文献   
6.
Planar organic electrochemical transistors (OECTs) using PEDOT:PSS as the channel material and nanostructured carbon (nsC) as the gate electrode material and poly(sodium 4‐styrenesulfonate (PSSNa) gel as the electrolyte were fabricated on flexible polyethylene terephthalate (Mylar®) substrates. The nsC was deposited at room‐temperature by supersonic cluster beam deposition (SCBD). Interestingly, the OECT acts as a hybrid supercapacitor (to give a device that we indicate as transcap). The energy storage ability of transcaps has been studied with two cell configurations: one featuring PEDOT:PSS as the positive electrode and nsC as the negative electrode and another configuration with reversed electrode polarity. Potentiostatic charge/discharge studies show that both supercapacitors show good performance in terms of voltage retention, in particular, when PEDOT:PSS is used as the positive electrode. Galvanostatic charge–discharge characteristics show typical symmetric triangular shape, indicating a nearly ideal capacitive behavior with a high columbic efficiency (close to 100%). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 96–103  相似文献   
7.
This paper introduces some methods for outlier identification in the regression setting, motivated by the analysis of steelmaking process data. The proposed methodology extends to the regression setting the boxplot rule, commonly used for outlier screening with univariate data. The focus here is on bivariate settings with a single covariate, but extensions are possible. The proposal is based on quantile regression, including an additional transformation parameter for selecting the best scale for linearity of the conditional quantiles. The resulting method is used to perform effective labeling of potential outliers, with a quite low computational complexity, allowing for simple implementation within statistical software as well as commonly used spreadsheets. Some simulation experiments have been carried out to study the swamping and masking properties of the proposal. The methodology is also illustrated by some real life examples, taking as the response variable the energy consumed in the melting process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
Anatase/rutile mixed-phase titanium dioxide (TiO2) photocatalysts in the form of nanostructured powders with different primary particle size, specific surface area, and rutile content were produced from the gas-phase by flame spray pyrolysis (FSP) starting from an organic solution containing titanium (IV) isopropoxide as Ti precursor. Flame spray-produced TiO2 powders were characterized by means of X-ray diffraction, Raman spectroscopy, and BET measurements. As-prepared powders were mainly composed of anatase crystallites with size ranging from 7 to 15 nm according to the synthesis conditions. TiO2 powders were embedded in a multilayered fluoropolymeric matrix to immobilize the nanoparticles into freestanding photocatalytic membranes. The photocatalytic activity of the TiO2-embedded membranes toward the abatement of hydrosoluble organic pollutants was evaluated employing the photodegradation of rhodamine B in aqueous solution as test reaction. The photoabatement rate of best performing membranes significantly overcomes that of membranes produced by the same method and incorporating commercial P25-TiO2.  相似文献   
9.
We propose a new method of unifying gravity and the Standard Model by introducing a spin-foam model. We realize a unification between an SU(2)SU(2) Yang–Mills interaction and 3D   general relativity by considering a constrained Spin(4)∼SO(4)Spin(4)SO(4) Plebanski action. The theory is quantized à la   spin-foam by implementing the analogue of the simplicial constraints for the Spin(4)Spin(4) symmetry, providing a way to couple Yang–Mills fields to spin-foams. A natural 4D extension of the theory is introduced. We also present a way to recover 2-point correlation functions between the connections as a first way to implement scattering amplitudes between particle states, aiming to connect Loop Quantum Gravity to new physical predictions.  相似文献   
10.
A novel and simple method is described for preparing colloidal Cu‐doped ZnSe(S) quantum dots (QDs) in aqueous media by introducing copper ions using the same method as to prepare colloidal ZnSe(S). More specifically, the Cu‐doped ZnSe(S) are prepared through the nucleation‐doping method in the presence of 3‐mercaptopropionic acid as stabilizers using zinc perchlorate, copper sulphate, and NaHSe as precursors. Confirmation of the preparation of Cu‐doped ZnSe(S) nanocrystals (NCs) is done with absorption and emission spectroscopies (UV–vis and PL) as the QDs show intensive green emissions. The reduction of ions Cu2+ to Cu+ is confirmed by using electron paramagnetic resonance (EPR), in which Cu+ ions are silent. The size determination is performed by using transmission electron microscopy (TEM) and dynamic light scattering (DLS), resulting in Cu‐doped ZnSe(S) particles with a mean diameter of 4.6 ± 3.5 nm. The excellent stability observed for the nanoparticles overcomes the intrinsic instability of traditional aqueous Cu‐doped ZnSe(S) NCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号