首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compounds of the type [XM(CO)2(ν-allyl)L2] (where X = Cl and Br; M = Mo and W; L2 = Ph2PCH2PPh2 and Ph2 PCH2CH2PPh2) have been prepard from the corersponding MeCN complexes. The spectral properties of these compounds and the effects of chelate rign size on 31P coordination shifts and J(183W—31P) have been investigated.  相似文献   

2.
[Fe(CO)3 L2] (L = PPh3, PPh2Me, P(OPh)3 or P(NMe2)3; L2 = Ph2 PCH2 CH2 PPh2+) undergo reversible one-electron oxidations to give the radical cations [Fe(CO)3L2]+ which have been studied by IR and ESR spectroscopy.  相似文献   

3.
Trends in 31P NMR coordination shifts for the complexes M(CO)3BrL2, [M(CO)3L2(NCMe)]+, MeC5H4Mn(CO)L2 and [MeC5H4Mn(CO)2]2L2 (M = Mn and Re;L2 = Ph2PCH2PPh2, Ph2PCH2CH2PPh2 and Ph2PCH2CH2AsPh2) are discussed.  相似文献   

4.
The voltammetric behaviour of the new complex, [Ru(NO)(Ph2PCH2CH2CH2PPh2)2]+, has been studied in 1,2-dimethoxyethane and the results compared with those obtained in the analogous reduction of [Ru(NO)(Ph2PCH2PPh2)2]+. The reduction proceeds in two reversible, one-electron steps. Stepwise reduction of these cationic complexes leads to two reversible, one-electron steps. Stepwise reduction of these cationic complexes leads to anionic complexes with formal oxidation number (?II) through the intermediate state which, in the case of Ph2PCH2CH2PPh2 ligand, is unstable and decays via a disproportionation pathway. A reduction-oxidation mechanism accounting for the chemical and electrochemical results is proposed.  相似文献   

5.
By reacting [Pd( )(μ-Cl)]2 with AgClO4 in NCMe, the corresponding cationic complexes [Pd( )(NCMe)2]ClO4 ( = phenylazophenyl-C2,N1; dimethylbenzylamine-C2,N; 8-methylquinoline-C8,N) can be obtained. Solutions containing the cations [Pd( )(S)2]+ are obtained when the reaction is carried out in tetrahydrofuran or acetone (S). The treatment of these solutions with bidentate ligands (L—L) (Ph2PCH2PPh2,Ph2PNHPPh2 or Ph2PCH2PPh2CHC(O)Ph) gives the mononuclear [Pd( )(L3l)]ClO4 complexes, with L3l acting as a chelate ligand. On the other hand [Pd( (μ-Cl)]2 reacts with L3l (Ph2PCH2PPh2, Ph2PNHPPh2) yielding [Pd( )Cl(L3l)] with L3l acting as monodentate. The reactions between [Pd( )(NCMe)2]ClO4 and 2,2′-bipyrimidyl give rise to the formation of the mononuclear [Pd( ) (bipym)]ClO4 or binuclear [Pd2( )2(μ-bipym)](ClO4)2, [( )Pd(μ-bipym)Pd( )](ClO4)2 derivatives. Finally [Pd( )Cldppm] (dppm = Ph2PCH2PPh2) react with NaH producing the neutral complexes [Pd( )(ddppm)] (ddppm = Ph2PCHPPh2) which by reaction with HCl lead again to the starting materials [Pd( )Cl(dppm)].  相似文献   

6.
A reaction of the potassium salts of RC(S)NHP(S)(OiPr)2 (R = PhNH, HL I; Ph, HL II) with a mixture of AgNO3 and Ph2P(CH2)1 − 3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Ag2(Ph2PCH2PPh2)2LINO3] ( 1 ), [Ag{Ph2P (CH2)2PPh2}LI,II] ( 2, 6 ), [Ag{Ph2P(CH2)3PPh2}LI,II] ( 3, 7 ), [Ag{Ph2P(C5H4FeC5H4)PPh2}LI,II] ( 4, 8 ), and [Ag2(Ph2PCH2PPh2)LII2] ( 5 ) complexes. The structures of these compounds were investigated by 1H and 31P{1H} NMR spectroscopy and elemental analyses. It was established that the binuclear complexes 1 and 5 are luminescent in the solid state at ambient conditions. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:386–391, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20627  相似文献   

7.
Summary The preparation, structural study and chemical behaviour of new cationic, monoanionic and dianionic tetracoordinate nickel(I) complexes of the types: [NiL4][BPh4] (L=PPh3, AsPh3 or SbPh3), [PR4][NiX2L2] (X=Cl, Br or I; L=PPh3, AsPh3 or SbPh3 and [PR4]+=PPh4, Ph3PCH2Ph or Ph3PEt) and [PR4]2[NiX3L] (X=Cl, Br or I; L=PPh3 and [PR4]+=PPh4 or PPh3CH2Ph) are described.  相似文献   

8.
Ru(C5H5)(CO)2H, prepared in situ from Ru3CO)12, reacts with bisphosphines L2 to give Ru(C5H5)L2H quantitatively [L2 = Ph2P(CH2)nPPh2n = 2 or 4; L2 = (R)-Ph2PCH2CH(Me)PPh2].  相似文献   

9.
Transition metal complexes containing two types of ligands: 5-phenyl-1,3,4-oxadiazole-2-thione ion (L) and tertiary phosphines, have been prepared. The complexes, [ML2A2] [M = Pd or Pt; A = PPh3 or Ph2PCH2CH2P(O)Ph2] and [ML2B] (M = Co, Ni, Pd or Pt; B = Ph2PCH2PPh2 or Ph2PCH2CH2PPh2), were characterized by elemental analysis, molar conductance, i.r., u.v.–vis., 31P-n.m.r., magnetic susceptibility measurements and mass spectra.  相似文献   

10.
The reaction of dppm (1,1-bis(diphenylphosphino)methane) with 2-bromo-4-phenylacetophenone and benzyl bromoacetate in chloroform produces new phosphonium salts, [Ph2PCH2PPh2CH2C(O) C6H4Ph]Br (I) and [Ph2PCH2PPh2CH2COOCH2Ph]Br (II). By allowing the phosphonium salts to react with the appropriate base, the bidentate phosphorus ylides, Ph2PCH2PPh2=C(H)C(O)C6H4Ph (III) and Ph2PCH2PPh2=C(H)C(O)OCH2Ph (IV), were obtained. The reaction of these ligands with mercury(II) halides in dry methanol led to the formation of the mononuclear complexes {HgX2[(Ph2PCH2PPh2C(H)C(O)C6H4Ph)]} (X = Cl (V); X = Br (VI); X = I (VII)) and {HgX2[(Ph2PCH2PPh2C(H)COOCH2Ph)]} (X = Cl (VIII); X = Br (IX); X = I (X)). The FTIR and 1H, 31P and 13C NMR spectra were studied. The structure of compound III was unequivocally determined by the single-crystal X-ray diffraction technique. Single-crystal X-ray analysis of the {HgBr2[(Ph2PCH2PPh2C(H)C(O)C6H4Me)]} complex (XI) revealed the presence of a mononuclear complex containing the Hg atom in a distorted tetrahedral environment. In all complexes, the ylides referred to above were coordinated through the ylidic carbon and the phosphine atom.  相似文献   

11.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The synthesis and characterization of several new ruthenium complexes containing heterocyclic thiolate ligands are described. CpRu(PPh3)2Cl reacts with thiolate anions to give CpRu(PPh3)2SR, (1) [R = 2-mercaptobenzimidazolyl (a), 2-mercaptobenzothiazolyl (b), and 2-mercaptobenzoxazolyl (c)] in good yields. The CpRu(PPh3)-(CO)SR (2) complexes are obtained by treating (1) with CO gas in THF at room temperature. The one-pot reaction of CpRu(PPh3)2Cl, thiolate anions with chelate bisphosphine ligands (P–P), gave CpRu(P–P)SR where P–P = Ph2PCH2PPh2 (dppm) (3); Ph2PCH2CH2PPh2 (dppe) (4).  相似文献   

13.
A detailed study of the electrochemical behaviour of the d8 complexes [Fe(NO)(Ph2PCH2CH2PPh2)2]+ and [Os(NO)(Ph2PCH2CH2PPh2)2]+, with emphasis on the properties of the reduced species, has been made and the results compared with those obtained in the reduction of the corresponding ruthenium derivative. the reduction proceeds in two reversible one-electron steps leading to d10 anionic complexes through an intermediate which, in the case of iron, is labile towards the loss of one phosphorus ligand. A tentative interpretation of this behaviour is suggested.  相似文献   

14.
The complexes [MHCl(CO)(PPh3)3] (M = Ru or Os) readily undergo substitution at the site trans to the hydride ligand to afford phosphinite-, phosphonite-, or phosphite-containing products [MHCI(CO)(PPh3)2L] [L = P(OR)Ph2, P(OR)2Ph or P(OR)3 respectively; R = Me or Et]. The ruthenium complexes alone undergo further substitution to afford complex cations [RuH(CO)(PPh3)nL4?n]+ [n = 2, L = P(OMe)3; n = 1, L = P(OR)3; n = 0, L = P(OR)2Ph or P(OR)Ph2] which were isolated and characterised as their tetraphenylborate salts. Synthesis of the cationic complexes [IrHL5][BPh4]2 [L = P(OR)3, R = Me or Et] is also reported. Stereochemical assignments based on NMR data are given, and second order 31P and high field 1H NMR patterns are analysed.  相似文献   

15.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

16.
A new cluster [Re3S4(Dppe)3(NCS)3]Br (Dppe = Ph2PCH2CH2PPh2) is synthesized. The molecular and crystal structures of the cluster are determined by X-ray diffraction analysis. The magnetochemical data indicate the high-spin ground state (S = 3/2) of the cluster at room temperature.  相似文献   

17.
Cationic nickel(II) complexes containing chelating O,O′-donor maltolate or ethyl maltolate ligands in conjunction with bidentate bisphosphine ligands Ph2P(CH2) n PPh2 were prepared by a one-pot reaction starting from nickel(II) acetate, bisphosphine, maltol (or ethyl maltol), and trimethylamine, and isolated as their tetraphenylborate salts. An X-ray structure determination of [Ni(maltolate)(Ph2PCH2CH2PPh2)]BPh4 shows that the maltolate ligand binds asymmetrically to the (slightly distorted) square-planar nickel(II) center. The simplicity of the synthetic method was extended to the synthesis of the known platinum(II) maltolate complex [Pt(maltolate)(PPh3)2]BPh4 which was obtained in high purity.  相似文献   

18.
Numerous new complexes of the type V(CO)5n(NO)Ln, have been prepared either by nitrosylation of [V(CO)6nLn]?(n  2, 3) with NOX (X  Cl, BF4) and [Co(NO)2Br]2, resp., or by reaction of L with “V(CO)5NO” generated in situ. The compounds comprise n  1: L  PPh3, PMe2H, P(OMe)3 and Ph2PCH2?PPh2 (dppm); n  2: L22  2 PMe2H, 2 PMe3, 2 P(OMe)3, dppm, Ph2P(CH2)2?PPh2, Ph2P(CH2)3,PPh2, Me2P(CH2)2PMe2, Ph2As(CH2)2AsPh2, o?C6H4(AsMe2)2 (diars) and o?C6H4(AsPh2)PPh2; n  3: L3  1.5 diars and CH3C(CH2PPh2)3. IR (CO and NO stretching region) and 51V NMR spectra are discussed; for n  2 and 3, the positions of the arsine and phosphine ligands relative to NO are either cis for all the ligand functions (arsines) or cis/trans.  相似文献   

19.
The synthesis and structures of the two CuI halide complexes [Cu5(dppm)(dppm?)2(OtBu)Cl2] and [Cu3(dppm)3Br2][CuBr2] (dppm = Ph2PCH2PPh2, dppm? = [Ph2PCHPPh2]?) are reported. The compounds were obtained by treating reaction mixtures of [CuOtBu] and dppm with dichloromethane or dibromomethane.  相似文献   

20.
The (hydroxo) methyl complex Pt(OH)(CH3)(Diphos) [Diphos = Ph2PCH2CH2PPh2] reacts with compounds containing acidic CH bonds (HX) to give unsymmetrical cis-dialkyls of general formula Pt(CH3)X(Diphos) [X = CH2COCH3, CH(COCH3)2, CH2CN or CH2NO2]; both the methyl and the cyclohexenyl complexes Pt(OH)R(Diphos) (R = CH3 or C6H9) insert carbon monoxide to give hydroxycarbonyl complexes PtR(CO2H)(Diphos) which are remarkably stable to decomposition by β-elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号