首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   0篇
化学   67篇
物理学   14篇
  2020年   2篇
  2019年   1篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1993年   2篇
  1991年   1篇
  1985年   2篇
  1982年   3篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
1.
The molecular dynamics of new poly (ω‐dodecalactam‐co‐ε‐caprolactam‐co‐propylene oxide) copolymers (DL/CL/PAC) has been investigated by using dynamic mechanical thermal analysis (DMTA) and dielectric relaxation spectroscopy (DRS) measurements. The copolymers were synthesized via anionic polymerization of relevant lactams activated with carbamoyl derivatives of telechelic hydroxyl terminated polypropylene oxide with isophorone diisocyanate (PAC). The calorimetric, X‐ray diffraction, and DMTA measurements were performed to recognize the influence of the composition ratio and the type of PAC on the physical, thermal, and mechanical properties of the synthesized copolymers. The DRS was used to study the frequency dependence of the dielectric permittivity of some isotherms from ?110 to 145 °C. Copolymerization of ε‐caprolactam with about 10 wt % ω‐dodecalactam results in a copolymer that has lower water absorption, a melting point close to that of polyamide 6 and has a high enough degree of crystallinity in respect to high storage modulus. Five dielectric relaxations have been observed in the dielectric spectra, three at lower temperature and two at higher temperature. The copolymers have two glass transition temperatures for polyamide segments and polyether blocks, indicating microphase separation in the copolymers. Other studies directed toward molecular dynamics of polyamide DL/CL/PAC copolymers have not been reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
2.
The syntheses of each of the three modifications of rhodium sesquioxide are reviewed and their infrared spectra are described. Models of each of these structures were constructed and manipulated using interactive molecular graphics. Their interrelationship is clearly described and used both to explain the similar features observed in their respective infrared spectra and to predict the occurrence of other discrete structures in the Rh2O3 system. Rhodium sesquisulfide, Rh2S3, is shown to be isostructural with the high pressure modification, II-Rh2O3.  相似文献   
3.
A series of low-melting, thermally stable cadmium metal-organic chemical vapor deposition (MOCVD) precursors have been synthesized, structurally and spectroscopically characterized, and implemented in growth of highly conductive and transparent CdO thin films. One member of the series, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N-diethyl-N',N'-dimethyl-ethylenediamine)cadmium(II), Cd(hfa)(2)()(N,N-DE-N',N'-DMEDA), represents a particularly significant improvement over previously available Cd precursors, owing to the low melting point and robust thermal stability. High-quality CdO films were grown by MOCVD on glass and single-crystal MgO(100) between 300 and 412 degrees C. Film growth parameters and substrate surface have large effects on microstructure and electron carrier transport properties. Enhanced mobilities observed for highly biaxially textured films grown on MgO(100) vs glass are attributed, on the basis of DC charge transport and microstructure analysis, to a reduction in neutral impurity scattering and/or to a more densely packed grain microstructure. Although single-grained films grown on MgO(100) exhibit greater mobilities than analogues with discrete approximately 100 nm grains and similar texture, this effect is attributed, on the basis of charge transport and Hall effect measurements as well as optical reflectivity analysis, to differences in carrier concentration rather than to reduced grain boundary scattering. Unprecedented conductivities and mobilities as high as 11,000 S/cm and 307 cm(2)/V.s, respectively, are obtained for epitaxial single-grained films (X-ray diffraction parameters: fwhm(omega) = 0.30 degrees, fwhm(phi) = 0.27 degrees ) grown in situ on MgO(100) at a relatively low temperature (400 degrees C).  相似文献   
4.
Crystals of CuNb(pyz)2OF5 · (pyz)(H2O) ( 1 ) and [Cu(pyz)2.5]+ [NbF6]? · (pyz) ( 2 ) were grown (150°C and autogeneous pressures) from CuO, 1/2(Nb2O5), (HF)x · pyridine, and H2O in excess pyrazine. Light blue single crystals of ( 1 ) are orthorhombic, crystallizing in space group Cccm (No. 66), with a = 14.547(1) Å, b = 16.135(2) Å, c = 13.803(2) Å, and Z = 8. The structure of ( 1 ) contains corner shared [Cu(pyz)4/2F2/2]+, [Cu(pyz)4/2O2/2], and [NbF4O1/2F1/2]?0.5 octahedra. Orange crystals of ( 2 ) are monoclinic, crystallizing in space group C2/c (No. 15), with a = 11.792(8) Å, b = 17.123(3) Å, c = 17.051(5) Å, β = 90.04(4)°, and Z = 8. The structure of ( 2 ) contains puckered rings of corner shared [Cu(pyz)(pyz)3/2]+ tetrahedra and isolated [NbF6]? anions within the rings.  相似文献   
5.
6.
The related parameters of cation size and valence that control the crystallization of Sr(3)CaRu(2)O(9) into a 1:2 B-site-ordered perovskite structure were explored by cationic substitution at the strontium and calcium sites and by the application of high pressure. At ambient pressures, Sr(3)MRu(2)O(9) stoichiometries yield multiphasic mixtures for M = Ni(2+), Mg(2+), and Y(3+), whereas pseudocubic perovskites result for M = Cu(2+) and Zn(2+). For A-site substitutions, an ordered perovskite structure results for Sr(3-x)Ca(x)CaRu(2)O(9), with 0 相似文献   
7.
Recently, the ferroelectromagnet YMnO3 has been the focus of interest because it exhibits both antiferromagnetism (Néel temperature 80 K) and ferroelectricity (Curie temperature 914 K). There have been no reports of complete YMn1−xMxO3 solid solutions in which substitution of the foreign M cation preserves the hexagonal P63cm structure. In contrast there exist several homeotypic phases with the general formula, Ln1+nCunMO3+3n (n=1 (M=Ti), 2 (M=V) and 3 (M=Mo); Ln: lanthanide). Several YMn1−x(Cu3/4Mo1/4)xO3 compounds have been synthesized. The solid solution, from YMnO3 (x=0) to YCu3/4Mo1/4O3 (x=1) has been characterized by X-ray diffraction and transmission electron microscopy study. For 0<x<0.9, the compounds are found to crystallize in the non-centrosymmetric structure, space group P63cm, of YMnO3. The Mn-free end member, x=1, crystallizes in a complex multiple cell, the superstructure being associated to Cu3+/Mo6+ cationic ordering. Dilution of the Mn3+ magnetic array by the paramagnetic (Cu2+) and diamagnetic (Mo6+) cations is found to decrease the antiferromagnetic ordering temperature and it becomes undetectable for x0.5 compositions.  相似文献   
8.
The equilibrium oxygen content was measured in the model system and important oxygen permeable material La1−xSrxCoO3−δ, where x=0.6, in the temperature range 650–900 °C and oxygen partial pressure range between 10−5 and 1 atm. The data were utilized to obtain changes in the partial entropy and enthalpy of oxygen in the solid as a function of the oxygen content. It is shown that the initially cubic perovskite undergoes to a phase transition to a tetragonal structure at δ >0.3. The oxygen permeation of L0.4Sr0.6CoO3−δ at 700–900 °C is found to be controlled by bulk solid state processes. The activation energy equals about 0.8 eV at high oxygen pressure and small oxygen nonstoichiometry. Increasing oxygen deficiency results in a rapid increase in the activation energy. In combination with thermodynamic data, these changes can be explained as resulting from the intrinsic spatial inhomogeneouty in oxygen vacancy distribution which varies both with temperature and oxygen nonstoichiometry. It is shown that, when the oxygen deficiency increases at constant temperature, the oxygen vacancies form locally ordered microdomains (clusters), which eventually results in a transition of the cubic perovskite structure to the tetragonal structure. The oxygen ion conductivity depends strongly on the development of the ordering. Paper presented at the 6th Euroconference on Solid state Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   
9.
Mg(2.56)V(1.12)W(0.88)O(8) crystals were grown from a MgO/V(2)O(5)/WO(3) melt. X-ray single-crystal diffraction studies revealed that it is orthorhombic with space group Pnma, a = 5.0658(5) A, b = 10.333(1) A, c = 17.421(2) A, Z = 6, and is isostructural with Mg(2.5)VMoO(8). Raman spectra are reported, and the assignment of the Raman bands is made by comparing the metal-oxygen vibrations of VO(4)/WO(4) tetrahedra in Mg(2.5)VWO(8) with the metal-oxygen vibrations of VO(4)/MoO(4) tetrahedra in Mg(2.5)VMoO(8). The stretching vibrations appearing at 1016 and 1035 cm(-)(1) are assigned to Mo=O and W=O double bonds, respectively, associated with the Mg(2+) cation vacancies.  相似文献   
10.
Sr(3)CaRu(2)O(9), a new 2:1 B-site ordered perovskite ruthenate, was synthesized and its structure determined based on powder X-ray, neutron and electron diffraction data. It is composed of one layer of CaO(6) alternating with two layers of RuO(6) perpendicular to the [111] axis of the cubic perovskite structure. The ordering leads to a [-Ru-Ru-Ca-] repeat unit along each of the pseudocubic directions. Sr(3)CaRu(2)O(9) is the first example of this structure-type to include a majority metal with d electrons (Ru(V), d(3)). Three-dimensional Sr(3)CaRu(2)O(9) can be transformed to the layered Ruddlesden-Popper phase Sr(1.5)Ca(0.5)RuO(4) (i.e., Sr(3)CaRu(2)O(8)) by reduction at 1200 degrees C in flowing argon. The original structure can be restored by oxidation of Sr(1.5)Ca(0.5)RuO(4) at 1000 degrees C in flowing oxygen. This remarkable transformation highlights the structural versatility afforded by the combination of ruthenium and calcium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号