首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  国内免费   2篇
化学   12篇
晶体学   1篇
数学   2篇
物理学   10篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2009年   3篇
  2006年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1987年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
Novel biomaterials are needed for bone tissue repair with improved mechanical performance compared to classical bioceramics. The objective of this work was to characterize a hybrid filler material, which is capable to coat as a thin film porous scaffolds improving their mechanical properties for bone tissue engineering. The hybrid filler material is a blend of chitosan and silica network formed through in situ sol–gel using tetraethylortosilicate and 3‐glycidoxypropyltrimethoxysilane (GPTMS) as silica precursors. The hypothesis was that the epoxy ring of GPTMS could react with the amino groups of chitosan in acidic media while it is also reacting the siloxane groups of hydrolyzed silica precursors. The formation of the hybrid organic–inorganic network was assessed by different physical techniques revealing changes in molecular mobility and hydrophilicity upon chemical reaction. Finally, the cytotoxicity of the samples was also evaluated by MTT assay. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1391–1400  相似文献   
2.
Hydrogels based on nanocomposites of statistical poly(hydroxyethyl acrylate-co-ethyl acrylate) and silica, prepared by simultaneous copolymerization and generation of silica nanoparticles by sol?Cgel process at various copolymer compositions and silica contents, characterized by a fine dispersion of filler, were investigated with respect to glass transition and polymer dynamics by dielectric techniques. These include thermally stimulated depolarization currents and dielectric relaxation spectroscopy, covering together broad ranges of frequency and temperature. In addition, equilibrium water sorption isotherms were recorded at room temperature (25?°C). Special attention was paid to the investigation of effects of silica on glass transition, polymer dynamics (secondary ?? and ?? sw relaxations and segmental ?? relaxation), and electrical conductivity in the dry systems (xerogels) and in the hydrogels at various levels of relative humidity/water content. An overall reduction of molecular mobility is observed in the nanocomposite xerogels, in particular at high silica contents. Analysis of the results and comparison with previous work on similar systems enable to discuss this reduction of molecular mobility in terms of constraints to polymeric motion imposed by interfacial polymer?Cfiller interactions and by the formation of a continuous silica network interpenetrated with the polymer network at filler contents higher than about 15?wt%.  相似文献   
3.
The vibronic vapour phase photoacoustic spectrum of Br2 in the wavelength region 505–541 nm (19796–18480 cm−1) has been recorded using microphone as well as pump-probe method. Discrete vibronic bands superimposed on a monotonically increasing continuum background towards the dissociation limit results from the overlapping B 3Π 0u /+X 1Σ g /+ and 1Π1u X 1Σ g /+ electronic transitions. Vibronic bands originating from υ″=0 have been used to estimate the relative rate of non-radiative relaxation as a function of the excited state B 3Π0u vibrational quantum number υ′. A comparison with the optical absorption spectroscopy of Br2 leads to the identification of three broad spectral regions between 505 and 541 nm (19796 and 18480 cm−1) on the basis of different non-radiative relaxation processes.  相似文献   
4.
本文利用KDV方程所对应的线性方程解所具有的光滑效应及压缩映像原理,得到了Hirota-Satsuma系统初值问题的局部和整体适定性结果.  相似文献   
5.
Dynamic mechanical–thermal analysis (DMTA), differential scanning calorimetry (DSC), thermally stimulated depolarization currents (TSDC) and, mainly, broadband dielectric relaxation spectroscopy (DRS) were employed to investigate in detail glass transition and polymer dynamics in silver/poly(methyl methacrylate) (Ag/PMMA) nanocomposites. The nanocomposites were prepared by radical polymerization of MMA in the presence of surface modified Ag nanoparticles with a mean diameter of 5.6 nm dispersed in chloroform. The fraction of Ag nanoparticles in the final materials was varied between 0 and 0.5 wt%, the latter corresponding to 0.055 vol%. The results show that the nanoparticles have practically no effect on the time scale of the secondary β and γ relaxations, whereas the magnitude of both increases slightly but systematically with increasing filler content. The segmental α relaxation, associated with the glass transition, becomes systematically faster and stronger in the nanocomposites. The glass transition temperature Tg decreases with increasing filler content of the nanocomposites up to about 10 °C, in good correlation by the four techniques employed. Finally, the elastic modulus decreases slightly but systematically in the nanocomposites, both in the glassy and in the rubbery state. The results are explained in terms of plasticization of the PMMA matrix, due to constraints imposed to packing of the chains by the Ag nanoparticles, and at the same time, of the absence of strong polymer–filler interactions, due to the surface modification of the Ag nanoparticles by oleylamine at the stage of preparation.  相似文献   
6.
Water and polymer dynamics in hydrogels based on random copolymers of hydrophilic poly(hydroxyl ethyl acrylate) (PHEA) and hydrophobic poly(ethyl acrylate) (PEA), in wide ranges of composition, were investigated by means of two dielectric techniques, thermally stimulated depolarization currents (TSDC) and, mainly, broadband dielectric relaxation spectroscopy (DRS) at several levels of relative humidity/water content. Water sorption of the hydrogels was studied by equilibrium sorption isotherms (ESI). Two secondary relaxations (γ and βsw) and the primary (segmental) α relaxation associated with the glass transition of the copolymer matrix were followed and analyzed against copolymer composition and water content. The results show that the copolymers are homogeneous at nm scale, except at very high PEA content. Correlations were observed between results on the organization of water in the hydrogels and on water effects on polymer dynamics. Distinct changes in the dielectric response, in particular in the time scale and the dielectric strength of the βsw relaxation, at the water content of the completion of the first hydration layer indicate that water molecules themselves contribute to the dielectric response at higher water contents. Proton conductivity of the hydrogels at various levels of water content was also studied and correlation to segmental dynamics (decoupling) was analyzed.  相似文献   
7.
We report the fabrication of electrically functional polyaniline thin-film microdevices. Polyaniline films were printed in the solid phase by Laser-Induced Forward Transfer directly between Au electrodes on a Si/SiO2 substrate. To apply solid-phase deposition, aniline was in situ polymerized on quartz substrates. Laser deposition preserves the morphology of the films and delivers sharp features with controllable dimensions. The electrical characteristics of printed polyaniline present ohmic behavior, allowing for electroactive applications. Results on gas sensing of ammonia are presented.  相似文献   
8.
Water sorption in hydrogels based on nanocomposites of poly(2‐hydroxyethyl acrylate) (PHEA) and silica, prepared by simultaneous polymerization and sol‐gel process, were studied gravimetrically over wide ranges of silica content, both below and above the percolation threshold of about 15% wt for the formation of a continuous inorganic network interpenetrated with the organic network. Measurements were performed at room temperature from the vapor phase, both at equilibrium and dynamic, for selected values of water activity αw between 0 and 0.95, and from the liquid phase. In the nanocomposite hydrogels, the overall water uptake from the vapor phase is practically the same as in pure PHEA below the percolation threshold, whereas it is reduced above the percolation threshold, in particular at high αw values where swelling becomes significant. Water clustering sets in at around 14 vol % (10 wt %) of water independently of composition, whereas the mean value of water molecules in a cluster decreases at high silica contents. In immersion experiments water uptake decreases as silica content increases to the percolation threshold of about 15 wt % and is then almost independent of composition. A scheme is proposed, which explains these results in terms of the existence of micelles, where a number of hydrophilic hydroxy groups are linked together, and their disentaglement by immersion into water. Diffusion coefficients of water depend on water content and are reduced on addition of silica above the percolation threshold. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   
9.
Limonene has a high emission rate both from biogenic sources and from household solvents. Here we examine the limonene + ozone reaction as a source for secondary organic aerosol (SOA). Our data show that limonene has very high potential to form SOA and that NO(x) levels, O(3) levels, and UV radiation all influence SOA formation. High SOA formation is observed under conditions where both double bonds in limonene are oxidized, but those conditions depend strongly on NO(x). At low NO(x), heterogeneous oxidation of the terminal double bond follows the initial limonene ozonolysis (at the endocyclic double bond) almost immediately, making the initial reaction rate limiting. This requires a high uptake coefficient between ozone and the first-generation, unsaturated organic particles. However, at high NO(x), this heterogeneous processing is inhibited and gas-phase oxidation of the terminal double bond dominates. Although this chemistry is slower, it also yields products with low volatility. UV light suppresses production of the lowest volatility products, as we have shown in earlier studies of the alpha-pinene + ozone reaction.  相似文献   
10.
Random copolymers of methyl methacrylate (MMA) and sermifluorinated methacrylate (sfMA), with constant side chain length (H10F10), as comonomers and various sfMA molar contents were studied by Dielectric Relaxation Spectroscopy (DRS) technique with respect to their phase transitions and molecular dynamics. DRS technique was proven a suitable technique for the detection of the phase transitions that take place in the systems under investigation, as it follows from the comparison with Differential Scanning Calorimetry (DSC) technique, which is traditionally used. Regarding molecular mobility, molecular motions of both the main chain and the sf side chains were followed, while different dynamics was recorded depending on the structure of the copolymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号