首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   0篇
化学   48篇
力学   2篇
数学   12篇
物理学   32篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   9篇
  2012年   3篇
  2011年   8篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   6篇
  1999年   4篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有94条查询结果,搜索用时 281 毫秒
1.
2.
3.
The zeta-potentials of silica, copper, platinum and gold particles have been measured as a function of pH. The isoelectric points were found to be at pH 3.0, 5.8, 3.0 and 3.5, respectively. In the pH range 3.0 to 5.8 copper and silica particles are oppositely charged and accordingly the coating of silica with copper particles could be demonstrated. In the case of gold and platinum the sign of the charge is such that direct adhesion to silica particles cannot be expected and this was also demonstrated in the case of platinum.  相似文献   
4.
B. Monson 《Discrete Mathematics》2010,310(12):1759-1771
When the standard representation of a crystallographic Coxeter group G (with string diagram) is reduced modulo the integer d≥2, one obtains a finite group Gd which is often the automorphism group of an abstract regular polytope. Building on earlier work in the case that d is an odd prime, here we develop methods to handle composite moduli and completely describe the corresponding modular polytopes when G is of spherical or Euclidean type. Using a modular variant of the quotient criterion, we then describe the locally toroidal polytopes provided by our construction, most of which are new.  相似文献   
5.
We present results for the structure and thermodynamics of the dipolar hard dumbbell fluid obtained from a recently developed theory which is based on an extension of cluster perturbation theory (CPT) for atomic fluids to the interaction site formalism. The calculations are for the lowest order result in the theory which we denote as the optimized random phase approximation in the interaction site formalism (ISF-ORPA). This method does not include unallowed diagrammatic contributions to the structure and thermodynamics, in contrast to previous CPTs in the interaction site formalism. We compare the results to computer simulation data and find that the theory gives a realistic representation of the effect of the electrostatic interactions on the structure of the fluid.  相似文献   
6.
We discuss the thermodynamics of adsorption of fluids in pores when the solid-fluid interactions lead to partial wetting of the pore walls, a situation encountered, for example, in water adsorption in porous carbons. Our discussion is based on calculations for a lattice gas model of a fluid in a slit pore treated via mean field density functional theory (MFDFT). We calculate contact angles for pore walls as a function of solid-fluid interaction parameter, alpha, in the model, using Young's equation and the interfacial tensions calculated in MFDFT. We consider adsorption and desorption in both infinite pores and in finite length pores in contact with the bulk. In the latter case, contact with the bulk can promote evaporation or condensation, thereby dramatically reducing the width of hysteresis loops. We show how the observed behavior changes with alpha. By using a value of alpha that yields a contact angle of about 85 degrees and maintaining the bulk fluid in a supersaturated vapor state on adsorption, we find an adsorption/desorption isotherm qualitatively similar to those for graphitized carbon black where pore condensation occurs at supersaturated bulk vapor states in the spaces between the primary particles of the adsorbent.  相似文献   
7.
Confinement of fluids in porous materials is widely exploited in a variety of technologies, including chemical conversion by heterogeneous catalysis and adsorption separations. Important fundamental phenomena associated with many-molecule interactions occur in such systems, including a remarkably long "memory" of the past when the actual amount of molecules in the pores dramatically depends on the history of how the external conditions have been changed. We demonstrate that the intrinsic diffusivity as measured by NMR serves as an excellent probe of the history-dependent states of the confined fluid. A remarkable feature of our results are differences in diffusivity between out-of-equilibrium states with the same density within the hysteresis loop. This reflects different spatial distributions of the confined fluid that accompany the arrested equilibration of the system in this region.  相似文献   
8.
Grand canonical Monte Carlo simulations using both Glauber dynamics and Kawasaki dynamics have been carried out for a recently developed lattice model of a nonwetting fluid confined in a porous material. The calculations are aimed at investigating the molecular scale mechanisms leading to mercury retention encountered during mercury porosimetry experiments. We first describe a set of simulations on slit and ink-bottle pores. We have studied the influence of the pore width parameter on the intrusion/extrusion curve shapes and investigated the corresponding mechanisms. Entrapment appears during Kawasaki dynamics simulations of extrusion performed on ink-bottle pores when the system is studied for short relaxation times. We then consider the more realistic and complex case of a Vycor glass building on recent work on the dynamics of adsorption of wetting fluids (Woo, H. J.; Monson, P. A. Phys. Rev. E 2003, 67, 041207). Our results suggest that mercury entrapment is caused by a decrease in the rate of mass transfer associated with the fragmentation of the liquid during extrusion.  相似文献   
9.
Solid-fluid and solid-solid phase equilibrium for binary mixtures of hard sphere chains modeling n-hexane, n-heptane, and n-octane has been calculated using Monte Carlo computer simulations. Thermodynamic integration was used to calculate the Gibbs free energy and chemical potentials in the solid and fluid phases from pure component reference values. A multiple stage free energy perturbation method was used to calculate the composition derivative of the Gibbs free energy. Equation of state and free energy data for the fluid phase indicate ideal solution behavior. Nonideality is much more significant in the solid phase with only partial solubility of shorter chains in the longer chains and essentially no solubility at the other end of the composition range. The miscibility decreases with increasing chain length difference between the components. For the model of n-hexane/n-octane mixtures solid--solid phase separation has been observed directly in some of the simulations, with the components segregating between the layers of the solid structure. The behavior is similar to that seen in some binary n-alkane mixtures with longer chain lengths but comparable chain length ratios between the components. Such phase separation, although indicated thermodynamically, is not seen directly in the simulations of the n-heptane/n-octane mixture due to the difference in the pure component crystal structures.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号