首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The partial molar volumes, V1(M), and the molar volume of isotactic crystalline low-molecular-weight poly(1-butene), iPBu-1, V1, have been calculated from the measured density of {iPBu-1 + solvent (n-hexane, n-heptane, n-nonane, n-decane, p-xylene, cyclohexane and chloroform)} systems. Some of the thermodynamic quantities were also obtained for the iPBu-1 with eight hydrocarbons (n-octane, n-decane, n-undecane, n-dodecane, n-tridecane, o-xylene, m-xylene, p-xylene) by the method of inverse gas chromatography at various temperatures. The weight fraction activity coefficients of the solvent at infinite dilution, omega2(infinity) and the Flory-Huggins thermodynamic interaction parameters, chi21(infinity), between polymer and solvents were determined. The partial molar free energy, deltaG2(infinity), the partial molar heat of mixing, deltaH2(infinity), at infinite dilution and the polymer solubility parameter, delta1, were calculated. Additionally, the (solid + liquid) binary mixtures equilibria, SLE, of iPBu-1 with three hydrocarbons (n-octane, n-decane and m-xylene) were studied by a dynamic method. By performing these experiments over a large concentration range, the T-x phase diagrams of the polymer-solvent systems were constructed. The excess Gibbs energy models were used to describe the nonideal behaviour of the liquid phase. The omega2(infinity) were determined from the solubility measurements and were predicted by using the UNIFAC FV model.  相似文献   

2.
Abstract

Experimental solubilities are reported for pyrene in binary solvent mixtures containing benzene with n-hexane, cyclohexane, n-heptane, n-octane, cyclooctane and isooctane at 26°C. Results of these measurements, combined with published pyrene and biphenyl solubilities, are used to test predictive expressions derived from the Nearly Ideal Binary Solvent (NIBS) model. The most successful equation in terms of goodness of fit involved a surface fraction average of the excess Gibbs free energy relative to Raoult's law and predicted the experimental solubilities in 17 systems with an average deviation of 2.3% and a maximum deviation of 8.9%. Two expressions approximating weighting factors with molar volumes provided accurate predictions in many systems studied but failed in their ability to predict pyrene solubilities in solvent mixtures containing benzene.  相似文献   

3.
Experimental solubilities are reported for anthracene dissolved in binary solvent mixtures containing 1-chlorobutane with n-hexane, n-heptane, n-octane, cyclohexane, methylcyclohexane and isooctane at 25°C. Results of these measurements, combined with estimates for the excess Gibbs free energy of the binary solvents, are used to evaluate the equilibrium constant for a presumed anthracene-chlorobutane molecular complex from the Extended Nearly Ideal Binary Solvent model. A single equilibrium constant was needed to describe the experimental data to within an average deviation of about 0.7%. The calculated association constant varied slightly with inert hydrocarbon cosolvent, the values ranging from K AC ϕ =2.5 for isooctane to K AC ϕ =6.0 for the cyclohexane cosolvent.  相似文献   

4.
Journal of Thermal Analysis and Calorimetry - Excess molar volumes, VE, of binary mixtures of dibromomethane (DBM) with n-hexane, n-heptane, n-octane, cyclohexane, tetrachloromethane, dipropyl and...  相似文献   

5.
Solubilities have been determined at 25°C for iodine in binary mixtures of carbon tetrachloride with cyclohexane, n-hexane, n-heptane, and octamethylcyclotetrasiloxane (OMCTS) and in mixtures of cyclohexane with n-hexane and OMCTS; and for benzil in binary mixtures of carbon tetrachloride with cyclohexane, n-hexane, and n-heptane, mixtures of n-hexane with cyclohexane and n-heptane, and mixtures of benzene with cyclohexane and toluene. With the exception of the benzene+cyclohexane system, the nearly ideal binary solvent model predicts these solubilities with a maximum deviation of 6% and an overall standard deviation of 2.4%. The model correctly predicts minima for solubility (mole fraction) of iodine in the OMCTS systems, and predicts solubilities within 4% for benzil in the carbon tetrachloride+n-hexane system, in which the solubility changes by a factor of 14. The failure of the model for predicting solubilities of benzil in mixtures of benzene and cyclohexane (maximum error of 25% for and 18-fold range of solubilities) is possibly due to specific interactions between benzil and benzene.  相似文献   

6.
First-order phase transitions of binary mixtures at the given pressure (P) and temperature (T) are studied by taking into account the composition fluctuations. Isothermal-isobaric semigrand canonical ensemble is adopted to find the relations among the total number of molecules, the composition fluctuations and Gibbs free energy density. By combining two identical subsystems of mixtures successively, the free energy density is transformed until being stable and its linear segments represent phase transitions. A new method is developed to calculate the phase equilibriums of binary mixtures. The method handles multiple types and number of phase equilibriums at single time and its solutions are physically justified. One example is shown for calculating the phase diagram of binary Lennard-Jones mixture. It demonstrates that the fluctuations of the total number of molecules in mixtures are fundamental behind phase transitions and the van der Waals loops in Gibbs free energy are reasonable.  相似文献   

7.
We present calculations of the nucleation barrier during crystallization in binary hard sphere mixtures under moderate degrees of supercooling using Monte Carlo simulations in the isothermal-isobaric semigrand ensemble in conjunction with an umbrella sampling technique. We study both additive and negatively nonadditive binary hard sphere systems. The solid-fluid phase diagrams of such systems show a rich variety of behavior, ranging from simple spindle shapes to the appearance of azeotropes and eutectics to the appearance of substitutionally ordered solid phase compounds. We investigate the effect of these types of phase behavior upon the nucleation barrier and the structure of the critical nucleus. We find that the underlying phase diagram has a significant effect on the mechanism of crystal nucleation. Our calculations indicate that fractionation of the species upon crystallization increases the difficulty of crystallization of fluid mixtures and in the absence of fractionation (azeotropic conditions) the nucleation barrier is comparable to pure fluids. We also calculate the barrier to nucleation of a substitutionally ordered compound solid. In such systems, which also show solid-solid phase separation, we find that the phase that nucleates is the one whose equilibrium composition is closer to the composition of the fluid phase.  相似文献   

8.
Syndiotactic polystyrene (sPS) forms a clathrate phase with a variety of compounds. Not only rigid molecules but also flexible molecules can be stored in the cavities of the clathrate phase. To clarify the adjustment mechanism of a flexible guest molecule to the sPS clathrate system, the host and guest structures were investigated by means of solid-state 13C NMR and Raman spectroscopy, and X-ray diffractometry for the sPS clathrates with a series of n-alkanes from n-hexane to n-decane. Although the 010 spacing of the host sPS lattice expanded slightly on going from n-hexane to n-heptane, it decreased markedly at n-octane and then increased gradually with the chain length of guest n-alkane. The conformational change of guest n-alkane molecules was involved in this anomalous change in the 010 spacing. Majority of the n-hexane and n-heptane molecules took extended chain structures in the clathrates, whereas all longer n-alkanes took bent chain structures. The mean-square displacement of hydrogen atoms in the clathrates was estimated by quasielastic neutron scattering experiments. It was confirmed that the host lattice contraction suppressed thermal motion of the clathrate system.  相似文献   

9.
Expansion of an organic solvent by an inert gas can be used to tune the solvent's liquid density, solubility strength, and transport properties. In particular, gas expansion can be used to induce miscibility at low temperatures for solvent combinations that are biphasic at standard pressure. Configurational-bias Monte Carlo simulations in the Gibbs ensemble were carried out to investigate the vapor-liquid-liquid equilibria and microscopic structures for two ternary systems: n-decane/n-perfluorohexane/CO2 and n-hexane/n-perfluorodecane/CO2. These simulations employed the united-atom version of the transferable potential for phase equilibria (TraPPE-UA) force field. Initial simulations for binary mixtures of n-alkanes and n-perfluoroalkanes showed that special mixing parameters are required for the unlike interactions of CHx and CFy pseudoatoms to yield satisfactory results. The calculated upper critical solution pressures for the ternary mixtures at a temperature of 298 K are in excellent agreement with the available experimental data and predictions using the SAFT-VR (statistical associating fluid theory of variable range) equation of state. The simulations yield asymmetric compositions for the coexisting liquid phases and different degrees of microheterogeneity as measured by local mole fraction enhancements.  相似文献   

10.
Excess molar volumes, at the temperature 25°C and atmospheric pressure over the whole composition range, are reported for the following binary mixtures: methyl ethanoate + (n-octane, n-decane); methyl ethanoate + 1-chlorooctane; 1-chlorooctane + (n-heptane, n-octane, n-nonane, n-decane); and for the ternary mixtures methyl ethanoate + 1-chlorooctane + (n-heptane, n-octane, n-nonane, n-decane). The values of excess molar volumes were calculated from density and composition results. The excess volumes were utilized to test the multiproperty group-contribution model of Nitta et al. using parameter sets available in the literature. Experimental results from ternary mixtures have also been compared to predictions from several empirical and semiempirical models, which utilize, exclusively, results from binary mixtures.  相似文献   

11.
The thermodynamic equations for the calculation of binary and ternary immersion data in excess formalism are presented. Immersion enthalpies and entropies of the n-hexane/n-octane, n-octane/n-tetradecane and n-hexane/n-tetradecane binary mixtures as well as the n-hexane/n-octane/n-tetradecane ternary mixture on activated carbon are calculated from the temperature dependence of adsorption isotherms. In order to evaluate the quality of the calculations, the calculated immersion enthalpies of the binary mixtures on activated carbon are compared with those that were measured calorimetrically. It is shown that phenomenological thermodynamics can be used successfully to predict calorimetric data on the basis of adsorption excess isotherms.  相似文献   

12.
The adsorption behavior of the ternary n-hexane/n-octane/n-tetradecane mixture and the binary n-hexane/n-octane, n-octane/n-tetradecane, n-hexane/n-tetradecane mixtures on the well-characterized TA 95 activated carbon has been studied. Measured binary data at 25 degrees C are used to predict the ternary data which are compared with measured ones. With the measured binary data at 15 degrees C, a prediction of ternary data is proposed without ternary experimental support. To predict ternary data from the binary ones, a thermodynamical model combining the methods of Myers and Price and Danner is used. Copyright 2000 Academic Press.  相似文献   

13.
Suri SK  Pal M 《Talanta》1984,31(4):298-300
A new, simple and rapid method based on the principle of liquid-liquid phase equilibria has been developed for the analysis of binary mixtures of chemically similar organic compounds. The method does not require elaborate instrumentation and can be used to analyse mixtures of members of homologous series. The application of the method has been illustrated by analysing binary mixtures of n-hexane and n-octane; the maximum uncertainty in this analysis is ~2%.  相似文献   

14.
高压下氮气在正庚烷-正辛烷混合溶剂中的溶解度研究   总被引:1,自引:0,他引:1  
Solubilities of nitrogen in binary mixtures of n-octane and n-heptane have been measured at temperatures from 20 to 70 ℃ and pressures up to 130 atm using a precision gas-liquid solubility apparatus. Experimental results can be expressed by the following equation Inx_(N_2)=A+BP_(N_2)+CP_(N_2)~2+DInP From the results obtained, the partial molar volume of dissolved nitrogen and the Henry's Law constants have also been calculated.  相似文献   

15.
We develop a hybrid computational approach for simulating mixtures of binary fluids and mobile, submicron particles. The model couples a lattice Boltzmann method for the binary fluid with a Brownian dynamics model for the particles. The particles can exhibit preferential wetting interactions with the different components of the fluid. As an illustration of the method, we carry out simulations in two dimensions to compare the spinodal decomposition of a pure binary fluid with the phase separation of binary blends that contain either fixed or mobile particles. We then isolate conditions where the flow of a binary fluid/particle mixture past surfaces with well-defined asperities leads to the formation of monodisperse droplets, which encapsulate the nanoparticles. The findings provide guidelines for creating multiphase emulsions with well-controlled morphologies.  相似文献   

16.
The Flory–Huggins lattice-theory expression for solvent activity in a polymer-solution is commonly used to calculate the thermodynamic interaction parameter χ with the aid of experimental data from vapor pressure osmometry. This expression assumes that χ is independent of composition. However, experimental data for a variety of polymer-solvent mixtures indicate that χ exhibits an appreciable concentration dependence. A group contribution method, UNIFAC (UNIQUAC Functional-Group Activity Coefficients) incorporating the free-volume correction of Oishi and Prausnitz is used to predict the dependence of χ on solvent concentration. Agreement with previously reported experimental data is within 15%. Calculated values of χ obtained from the Flory–Huggins expression for solvent activity and from the corresponding Gibbs free energy of mixing (which does not assume that χ is independent of composition) are compared. Calculations based on the Gibbs free energy of mixing predict a somewhat larger value of χ relative to those based on solvent activity. The specific Gibbs free energy of mixing for polystyrene-solvent mixtures is calculated using the UNIFAC model, and is found to represent qualitatively the phase equilibrium behavior. Quantitative discrepancies are observed, however, for the polystyrene-acetone system in light of the actual experimental solubility reported by Suh and Clark (20). Most of the thermodynamic predictions for polymer-solvent systems investigated herein are correlated qualitatively with the relative mismatch between solubility parameters of both components.  相似文献   

17.
A new molecular simulation procedure is reported for determining the phase behavior of fluids and fluid mixtures, which closely follows the experimental synthetic method. The simulation procedure can be implemented using Monte Calro or molecular dynamics in either the microcanonical or canonical statistical ensembles. Microcanonical molecular dynamics simulations are reported for the phase behavior of both the pure Lennard-Jones fluid and a Lennard-Jones mixture. The vapor pressures for the pure fluid are in good agreement with Monte Carlo Gibbs ensemble and Gibbs-Duhem calculations. The Lennard-Jones mixture is composed of equal size particles, with dissimilar energy parameters (?(2)∕?(1) = 1∕2, ?(12)∕?(1) = 1∕2). The binary Lennard-Jones mixture exhibits liquid-liquid equilibria at high pressures and the simulation procedure allows us to estimate the coordinates of the high-pressure branch of the critical curve.  相似文献   

18.
A solid-liquid equilibrium (SLE) thermodynamic model based on the SAFT-VR equation of state (EOS) is presented. The model allows for the calculation of solid-liquid phase equilibria in binary mixtures at atmospheric pressure. The fluid (liquid) phase is treated with the SAFT-VR approach, where molecules are modelled as associating chains of tangentially bonded spherical segments interacting via square-well potentials of variable range. The equilibrium between the liquid and solid phase is treated following a standard thermodynamic method that requires the experimental temperature and enthalpy of fusion of the solute. The model is used to calculate the solubilities of naphthalene and acetic acid in common associating and non-associating organic solvents and to determine the solid-liquid phase behaviour of binary mixtures with simple eutectics. The SAFT-VR pure component model parameters are determined by comparison to experimental vapour pressure and saturated liquid density data with the choice of association models according to the nature of the molecule; in addition, an unlike adjustable parameter (kij) is used to model the solutions. The solubility data of naphthalene and acetic acid in both associating and non-associating solvents are reproduced essentially within the accuracy of the experimental measurements. The phase boundaries and the position of the eutectic points in the binary mixtures considered are, in most cases, reproduced with the accuracy commensurate with the industrial applications. Overall, the results presented show that the SAFT-VR EOS can be used with confidence for the prediction of the SLE of binary systems at atmospheric pressure.  相似文献   

19.
The vapor-liquid equilibrium of binary mixtures of xenon + SF6 has been measured at nine temperatures from 235.34 to 295.79 K and pressures up to 6.5 MPa. The mixture critical line is found to be continuous between the critical points of the pure components, and hence, the system can be classified as type I phase behavior in the scheme of van Konynenburg and Scott. The excess Gibbs free energies have been calculated, and the experimental results have been interpreted using the statistical associating fluid theory for potentials of variable range (SAFT-VR). Additionally, the SAFT-VR equation has been used to model other systems involving SF6 and alkanes, illustrating the predictability of the approach and further demonstrating the transferability of parameters between binary mixtures involving alkanes and xenon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号