首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   4篇
  国内免费   1篇
化学   189篇
晶体学   7篇
力学   1篇
数学   4篇
物理学   70篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2016年   5篇
  2015年   1篇
  2013年   7篇
  2012年   9篇
  2011年   11篇
  2010年   10篇
  2009年   9篇
  2008年   11篇
  2007年   14篇
  2006年   23篇
  2005年   16篇
  2004年   13篇
  2003年   20篇
  2002年   7篇
  2001年   7篇
  2000年   8篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   11篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   9篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1968年   1篇
  1932年   1篇
  1931年   2篇
  1923年   2篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
1.
The three-dimensional structure of nanocomposite microgels was precisely determined by cryo-electron micrography. Several nanocomposite microgels that differ with respect to their nanocomposite structure, which were obtained from seeded emulsion polymerization in the presence of microgels, were used as model nanocomposite materials for cryo-electron micrography. The obtained three-dimensional segmentation images of these nanocomposite microgels provide important insights into the interactions between the hydrophobic monomers and the microgels, that is, hydrophobic styrene monomers recognize molecular-scale differences in polarity within the microgels during the emulsion polymerization. This result led to the formation of unprecedented multi-layered nanocomposite microgels, which promise substantial potential in colloidal applications.  相似文献   
2.
A hydrogel‐based microchamber with organic electrodes for efficient electrical stimulations of human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) is described. The microchamber is made from molecularly permeable, optically transparent, and electrically conductive polyvinyl alcohol (PVA) hydrogel and highly capacitive carbon electrode modified with poly(3,4‐ethylenedioxythiophene) (PEDOT). Spheroids of hiPSC‐CMs are cultured in microchambers, and electrically stimulated by the electrode for maturation. The large interfacial capacitance of the electrodes enables several days of electrical stimulation without generation of cytotoxic bubbles even when the electrodes are placed near the spheroids. The spheroids can be cultivated in the closed microchambers because of the permeated nutrients through the hydrogel, thus the spheroids are stably addressable and the culture medium around the sealed microchambers can be simply exchanged. Synchronized beating of the spheroids can be optically analyzed in situ, which makes it possible to selectively collect electrically responsive cells for further use. As the hydrogel is electrically conductive, the amount of electrical charge needed for maturing the spheroids can be reduced by configuring electrodes on the top and the bottom of the microchamber. The bioreactor will be useful for efficient production of matured hiPSC‐CMs for regenerative medicine and drug screening.  相似文献   
3.
We establish symmetric inequalities with power-exponential functions and propose a conjecture.  相似文献   
4.
5.
To obtain porous TiO2 film, the precursor sol was prepared by hydrolysis of Ti isopropoxide and then complexed with trehalose dihydrate. The porous TiO2 film was fabricated by the dip-coating technique on glass substrates using this solution. The TiO2 film was calcined at 500 °C. The maximum thickness of the film from one-run dip-coating was ca. 740 nm. The film was composed of nanosized particle and pores. The porosity of the TiO2 film was increased by addition of trehalose dihydrate to the sol. The porous TiO2 films were calcined at different temperatures. The effects of calcination temperature on the microstructure of the porous TiO2 film were investigated. The porous film prepared from sol containing trehalose still kept the porous structure after calcination at 950 °C. The phase transition temperature of the film from anatase to rutile was shifted from 650 to 700 °C by addition of trehalose to the sol.  相似文献   
6.
We propose a binary fluorimetric method for DNA and RNA analysis by the combined use of two probes rationally designed to work cooperatively. One probe is an oligonucleotide (ODN) conjugate bearing a β‐cyclodextrin (β‐CyD). The other probe is a small reporter ligand, which comprises linked molecules of a nucleobase‐specific heterocycle and an environment‐sensitive fluorophore. The heterocycle of the reporter ligand recognizes a single nucleobase displayed in a gap on the target labeled with the conjugate and, at the same time, the fluorophore moiety forms a luminous inclusion complex with nearby β‐CyD. Three reporter ligands, MNDS (naphthyridine–dansyl linked ligand), MNDB (naphthyridine–DBD), and DPDB (pyridine–DBD), were used for DNA and RNA probing with 3′‐end or 5′‐end modified β‐CyD – ODN conjugates. For the DNA target, the β‐CyD tethered to the 3′‐end of the ODN facing into the gap interacted with the fluorophore sticking out into the major groove of the gap site ( MNDS and DPDB ). Meanwhile the β‐CyD on the 5′‐end of the ODN interacted with the fluorophore in the minor groove ( MNDB and DPDB ). The results obtained by this study could be a guideline for the design of binary DNA/RNA probe systems based on controlling the proximity of functional molecules.  相似文献   
7.
This paper describes a control system of stockers for radioactive source in storage room at laboratory for tracer experiment. The system is composed of a personal computer, a locker controller, three card readers, a monitor TV, and a video tape recorder (VTR). The personal computer controls other equipment with a registered user's number. When a user inserts an identification card into the card reader, the computer memorizes assigned gate number, the user's number and the time; it processes those data and prints out a document. The locker controller releases the electric key of user's locker which is designated by the computer. The VTR records the person entering into the storage room to identity if he uses his card. This system proved to effectively prevent intrusion into the storage room of an unregistered person or to use carelessly other user's source; in addition it can record precisely the stock of radioactive source.  相似文献   
8.
The reaction between glass-like carbon (GC) and chlorine trifluoride (ClF3) gas was investigated with weight measurements, surface analysis, and gas desorption measurements, where the ClF3 gas is used for the in situ cleaning of tubes in silicon-related fabrication equipment. From Auger electron spectroscopy and X-ray photoelectron spectroscopy measurements, a carbon mono-fluoride, –(CF)n–, film near the surface of GC is considered to be grown onto the GC surface above 400 °C by the chemical reaction with ClF3, and this thickness of the fluoride film depends on the temperature. The grown fluoride film desorbs by annealing in a vacuum up to 600 °C. Although GC is apparently etched by ClF3 over 600 °C, the etch rate of GC is much lower than that of SiC and quartz.  相似文献   
9.
10.
Surface enhanced Raman scattering (SERS) has been applied to study the lithium intercalation/deintercalation process at the interface of a pyrolytic graphite electrode with propylene and ethylene carbonate containing organic solutions. We have focused on the lattice vibration of the most outer graphite surface layer simultaneously with cyclic voltammetric measurements. In situ Raman spectroscopy performed in this way allowed us to determine the La value that describes the size of graphitic microcrystallites along the a-axis. It was found that the La value decreases when the electrode is polarized to potentials between 0.02 and 1.0 V. This phenomenon can be correlated with the intercalation of lithium ions into the graphene structure. According to the spectral change, the size of the graphitic microcrystallites shows reversible behavior with potential cycling at the surface of the electrode. Electronic Publication  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号