首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the effectiveness of potential anti-cancer therapeutics or therapies, efficient screening methods are required. On the one hand, multicellular 3D aggregates (spheroids) are a powerful in vitro model for simulating the in vivo situation and on the other hand, planar electrode structures are generally highly suitable for automation and parallel testing. Here, the detection of the effect of active substances on spheroids positioned on electrodes of substrate integrated electrode arrays is exemplarily investigated. As a 3D tissue model a reaggregation system of T47D clone 11 tumor cells is used. The effect of cytotoxins (DMSO, Triton X-100) on spheroids can be detected by recording the effective impedance of planar electrodes covered by spheroids. The equivalent circuit model parameter of electrodes covered by cytotoxin treated spheroids are determined from recorded impedance spectra and compared to the parameter of electrodes covered by control spheroids as well as not covered electrodes. Spheroids on electrodes mainly influence the electrode impedance in the frequency range of 10 kHz to 1 MHz. The results are discussed in view of an optimal electrode/spheroid-interface for sensing the effects of therapeutics with high sensitivity.  相似文献   

2.
To investigate the effectiveness of potential anticancer therapeutics or therapies, efficient screening methods are required. On the one hand, multicellular 3D aggregates (spheroids) are a powerful in vitro model for simulating the in vivo situation and on the other hand, planar electrode structures are generally highly suitable for automation and parallel testing. Here, the detection of the effect of active substances on spheroids positioned on electrodes of substrate integrated electrode arrays is exemplarily investigated. As a 3D tissue model a reaggregation system of T47D clone 11 tumor cells is used. The effect of cytotoxins (DMSO, Triton X-100) on spheroids can be detected by recording the effective impedance of planar electrodes covered by spheroids. The equivalent circuit model parameter of electrodes covered by cytotoxin treated spheroids are determined from recorded impedance spectra and compared to the parameter of electrodes covered by control spheroids as well as not covered electrodes. Spheroids on electrodes mainly influence the electrode impedance in the frequency range of 10 kHz to 1 MHz. The results are discussed in view of an optimal electrode/spheroid-interface for sensing the effects of therapeutics with high sensitivity.  相似文献   

3.
This study explores the use of N‐substituted polypyrroles as a route for localizing DNA molecules onto conducting surfaces. N‐substituted pyrrole monomers containing N‐hydroxysuccinimidyl groups for DNA binding reactions were synthesized. These monomers were electro‐copolymerized under different conditions on platinum or gold working electrodes in a three‐electrode/single compartment cell. Subsequent DNA reactions were performed by incubating the resulting polymer conductive films with amino‐substituted DNA sequences. In addition, the electro‐copolymerization reactions of pyrrole monomers were conducted on preselected electrode positions of the Molecular Nanosystems (MNS) wafers and the formation of conductive films was demonstrated. In these experiments, it was determined also that by controlling the electro‐copolymerization reactions, the conductive films can be restricted to grow on specific locations of the MNS wafer. This was achieved by electrically passivating the chosen electrodes with self‐assembled multilayers (SAM)s of alkane thiols. Hexadecane thiol (HDT) was found the most efficient in forming SAMs and in preventing the pyrrole electropolymerization. Various analytical techniques including AFM, IR, and cyclic voltammetry (CV) were used to characterize the monomers, the electropolymerized polymers, and the attachment of amine‐terminated DNA to polypyrrole copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6014–6024, 2009  相似文献   

4.
A method is described for continuous observation of isolated single cells that enables genetically identical cells to be compared; it uses an on-chip microculture system and optical tweezers. Photolithography is used to construct microchambers with 5-microm-high walls made of thick photoresist (SU-8) on the surface of a glass slide. These microchambers are connected by a channel through which cells are transported, by means of optical tweezers, from a cultivation microchamber to an analysis microchamber, or from the analysis microchamber to a waste microchamber. The microchambers are covered with a semi-permeable membrane to separate them from nutrient medium circulating through a "cover chamber" above. Differential analysis of isolated direct descendants of single cells showed that this system could be used to compare genetically identical cells under contamination-free conditions. It should thus help in the clarification of heterogeneous phenomena, for example unequal cell division and cell differentiation.  相似文献   

5.
6.
Stimuli‐responsive hydrogels are continuing to increase in demand in biomedical applications. Occluding a blood vessel is one possible application which is ideal for a hydrogel because of their ability to expand in a fluid environment. However, typically stimuli‐responsive hydrogels focus on bending instead of radial uniform expansion, which is required for an occlusion application. This article focuses on using an interdigitated electrode device to stimulate an electro‐responsive hydrogel in order to demonstrate a uniform swelling/deswelling of the hydrogel. A Pluronic‐bismethacrylate (PF127‐BMA) hydrogel modified with hydrolyzed methacrylic acid, in order to make it electrically responsive, is used in this article. An interdigitated electrode device was manufactured containing Platinum electrodes. The results in this paper show that the electrically biased hydrogels deswelled 230% more than the non‐biased samples on average. The hydrogels deswelled uniformly and showed no visual deformations due to the electrical bias. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1523–1528  相似文献   

7.
A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution.  相似文献   

8.
《Electrophoresis》2018,39(19):2460-2470
This study uses negative dielectrophoresis and AC electroosmosis as a driving mechanism and presents an electrically driven microconcentrator that concentrates the sample in the region exterior to the electrodes (termed as exterior‐electrode electrically driven microconcentrator in this paper). The proposed microconcentrator uses a 3‐D face‐to‐face electrode pair; the top electrode is a relatively large planar electrode, and the bottom electrode is formed with three to six long and thin electrodes connected into an open ring. The sample is brought to the vicinity of the open electrode at the bottom by electroosmotic flow; then, negative dielectrophoresis is used to push the sample away from the electrode and concentrate it in the region surrounded by the open ring electrode. Concentration using an exterior‐electrode electrically driven microconcentrator offers promise for convenient use in conjunction with relevant detection systems. The results indicate that for the proposed exterior‐electrode electrically driven microconcentrator, the optimal frequency is 100 kHz and the optimal voltage is 13 Vp‐p. The corner concentration process at the corners of the bottom open electrodes enables the multi‐corner electrodes to exhibit better concentration results than that exhibited by semicircular‐shaped electrodes. The concentration performance is most favorable when the shape of the open electrode at the bottom is a five‐vertex electrode, enabling a concentration enhancement factor of 55 times for a latex particle solution and 11 times for E. coli. The experimental results also demonstrate that the concentration phenomenon in this study is not induced by non‐specific adsorption and can be repeated multiple times.  相似文献   

9.
《化学:亚洲杂志》2017,12(3):293-297
Ag2O cubes, truncated octahedra, rhombic dodecahedra, and rhombicuboctahedra were synthesized in aqueous solution. Two tungsten probes were brought into contact with a single particle for electrical conductivity measurements. Strongly facet‐dependent electrical conductivity behaviors have been observed. The {111} faces are most conductive. The {100} faces are moderately conductive. The {110} faces are nearly non‐conductive. When electrodes contacted two different facets of a rhombicuboctahedron, asymmetrical I–V curves were obtained. The {111} and {110} combination gives the best I–V curve expected for a p‐n junction with current flowing in one direction through the crystal but not in the opposite direction. Density of states (DOS) plots for varying number of different lattice planes of Ag2O match with the experimental results, suggesting that the {111} faces are most electrically conductive. The thicknesses of the thin surface layer responsible for the facet‐dependent properties of Ag2O crystals have been determined.  相似文献   

10.
Multiple stretchability has never been demonstrated as supercapacitors because the hydrogel used cannot fully recover after being heavily deformed. Now, a highly reversibly stretchable all‐polymer supercapacitor was fabricated using a developed double network hydrogel (DN hydrogel) as electrolyte and pure polypyrrole (PPy) as electrode. The DN hydrogel provides excellent mechanical properties, which can be stretched up to 500 % many times and then restore almost 100 % of the original length. To fabricate the fully recoverable stretchable supercapacitor, we annealed a free‐standing pure conducting polymer film as electrode so that the electrodes induced retardance is minimized. The as‐fabricated DN hydrogel/pure conducting polymer supercapacitors can be perfectly recovered from 100 % strain with almost no residual deformation left and the electrochemical performance can be maintained even after 1000 stretches (but not bending).  相似文献   

11.
欧阳建勇 《物理化学学报》2018,34(11):1211-1220
因为导电高分子结合了金属与塑料的优点,他们一直受到很大的关注。但是他们的应用受到一些因素的影响,包括他们的电学性质,稳定性和可加工性。近来,导电高分子的性能得到很大的提高。他们在许多领域的重要应用被论证,比如透明电极,可拉伸电极,神经界面,热电转换和能量储存。这篇文章简单综述了导电高分子的电导提高和它们在热电转换,超级电容器和电池的应用。  相似文献   

12.
The sensing of vapor odorants is highly demanded in the field of life and medical sciences. Although olfactory receptors (ORs) have potentials to recognize volatile organic compounds, the interaction of ORs, chemical vapors, and peptide components in olfactory mucus has yet to be analyzed to develop OR‐based sensors. A bioinspired electrophysiology technique is shown to record the response of reconstituted insect ORs to chemical vapors. To mimic the interface between ORs and olfactory mucus, OR expressing spheroids were loaded into a hydrogel microchamber array. A negative extracellular field potential shift of spheroids was successfully observed by the stimulation of their vapor cognate ligand. Importantly, the ligand repertoire of the OR of malaria vector mosquito examined by this method differed from that of in vivo studies. Our method is useful to develop protein‐based gas sensing techniques and to examine the binding of ORs and chemical vapors.  相似文献   

13.
We present a novel zinc oxide (ZnO) optically transparent electrode (OTE) prepared by the spin‐spray technique for spectroelectrochemistry. The spin‐spray technique can deposit ZnO film at a low cost, high rate deposition, and at a low temperature (<100 °C) in a single step. This new technique provides good optical transparency and electrical conductivity for ZnO. The electrochemical and spectroelectrochemical properties of the ZnO electrode were investigated for varying thicknesses of ZnO using methylene blue as a redox indicator. A ZnO OTE chip that includes three electrodes on a glass chip was developed for thin‐layer spectroelectrochemistry. Moreover, the ZnO films were successfully applied in an electrochemical‐localized surface plasmon resonance (LSPR) method for methylene blue detection by using them as a transparent conducting substrate for loading gold nanoparticles.  相似文献   

14.
A one‐step etching method was developed to fabricate glass free‐flow electrophoresis microchips with a rectangle separation microchamber (42 mm‐long, 23 mm‐wide and 28 μm‐deep), in which two glass bridges (0.5 mm‐wide) were made simultaneously to prevent bubbles formed by electrolysis near the Pt electrode from entering the separation chamber. By microchip free‐flow zone electrophoresis, with 200 V voltage applied, the baseline separation of three FITC labeled proteins, ribonuclease B, myoglobin and β‐lactoglobulin, was achieved, with resolution over 1.78. Furthermore, with 2.5 mM Na2SO4 added into the electrode buffer to form higher electrical field strength across separation microchamber than electrode compartments, similar resolution of samples was achieved with the applied voltage decreased to 75 V, which could obviously decrease Joule heat during continuous separation. All these results demonstrate that the free‐flow electrophoresis microchip fabricated by one‐step etching method is suitable for the continuous separation of proteins, which might become an effective pre‐fractionation method for proteome study.  相似文献   

15.
Eyer K  Kuhn P  Hanke C  Dittrich PS 《Lab on a chip》2012,12(4):765-772
We present a microfluidic device that enables the determination of intracellular biomolecules in multiple single cells. The cells are individually trapped and isolated in a microchamber array. Since the microchambers can be opened and closed reversibly, the cells can be exposed to different solutions sequentially, e.g. for incubation, washing steps, labelling and finally, for lysis. The tightly sealed microchambers enable the retention and analysis of cell lysate derived from single cells. The performance of the device is demonstrated by monitoring the levels of the cofactors NADPH and NADH both in healthy mammalian cells and in cells exposed to oxidative stress. The platform was also used to determine the toxic impact of the alkaloid camptothecin on the intracellular enzyme glucose-6-phosphate dehydrogenase levels. In general, the device is applicable for the analysis of cell auto-stimulation and the detection of intracellular metabolite concentration or expression levels of proteins.  相似文献   

16.
The development of low-cost electrode devices from conductive materials has recently attracted considerable attention as a sustainable means to replace the existing commercially available electrodes. In this study, two different electrode surfaces (surfaces 1 and 2, denoted as S1 and S2) were fabricated from chocolate wrapping aluminum foils. Energy dispersive X-Ray (EDX) and field emission scanning electron microscopy (FESEM) were used to investigate the elemental composition and surface morphology of the prepared electrodes. Meanwhile, cyclic voltammetry (CV), chronoamperometry, electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were used to assess the electrical conductivities and the electrochemical activities of the prepared electrodes. It was found that the fabricated electrode strips, particularly the S1 electrode, showed good electrochemical responses and conductivity properties in phosphate buffer (PB) solutions. Interestingly, both of the electrodes can respond to the ruthenium hexamine (Ruhex) redox species. The fundamental results presented from this study indicate that this electrode material can be an inexpensive alternative for the electrode substrate. Overall, our findings indicate that electrodes made from chocolate wrapping materials have promise as electrochemical sensors and can be utilized in various applications.  相似文献   

17.
2-Aminoanthraquinone (AAQ) molecules were covalently grafted onto chemically modified graphene (CMG), and the AAQ functionalized CMG sheets were self-assembled into macroporous hydrogels for supercapacitor electrodes. The electrode based on the AAQ modified self-assembled graphene hydrogel (AQSGH) showed a high specific capacitance of 258 F g(-1) at a discharge current density of 0.3 A g(-1), which is much larger than that of a pure graphene hydrogel (193 F g(-1)). Furthermore, the AQSGH electrode exhibited excellent rate capability and a long cycle life. This is mainly due to the covalently bonded AAQ moieties contributing additional redox capacitance. Furthermore, the highly conductive graphene hydrogel scaffold provided a large specific surface area for forming electric double layers and convenient routes for charge transfer and electrolyte diffusion.  相似文献   

18.
Novel electrically conducting and biocompatible composite hydrogel materials comprising of poly (aniline) (PANI) nanoparticles dispersed in a poly (vinyl alcohol) (PVA) – g–poly (acrylic acid) (PAA) matrix were prepared by in situ polymerization of aniline. The prepared ionic hydrogels were evaluated for their water uptake capacity in distilled water. While structural insights into the synthesized polymer was sought by Fourier Transform Infrared (FTIR) spectroscopy and X–Ray Diffraction (XRD) techniques, morphology and dimension of PANI particles embedded into the colored optically semi–transparent polymer films were evaluated by Scanning Electron Microscopy (SEM) analysis and Transmittance Electron Microscopy (TEM) while thermal behavior of composite hydrogel was investigated by Differential Scanning Calorimetry (DSC). Electrical conductivity of composite hydrogels containing different PANI percentage was determined by LCR. Considering the potential of electrically conductive nanocomposites materials in biomedical applications the in vitro blood compatibility of nanocomposites was investigated by employing several in vitro tests.  相似文献   

19.
神经界面电极作为人体和外部器件间信息融合的媒介, 为人们进一步探究神经系统高级功能的机制提供了有效工具. 传统的神经电极多以金属和半导体材料为主, 这两类材料因具有惰性材料的特性及优越的 导电性能而成为早期神经电极的主要制备材料, 但由于其刚性过大和光滑表面导致的机械失配及与生物组织间过高的电化学阻抗限制了神经电极的进一步发展. 导电高分子作为一种有机导电材料, 同时具备柔软性 (杨氏模量约在0.01~10 GPa)和导电性(高掺杂度的导电高分子的电导率在金属范围, 100~105 S/cm)的特征, 是制备神经电极的有效材料. 近年来, 人们利用导电高分子材料对传统电极材料进行改性甚至替代, 以提高电极比表面积、 减小界面阻抗, 并提高电极检测的灵敏性; 同时减小电极与组织间的应变失配, 减少炎症反应, 并进一步在导电高分子中引入功能性生物大分子, 减少生物组织对电极的排异反应, 增加电极在体内长期植入的稳定性. 本文讨论和总结了导电高分子材料在神经电极中的应用, 分别对导电高分子作为涂层修饰神经电极、 全导电高分子材料神经电极及导电高分子复合材料神经电极等展开讨论, 分析了导电高分子在神经界面电极中的应用前景及存在的问题, 以期对神经界面电极在脑科学和生物电子医疗等前沿领域的进一步发展提供参考.  相似文献   

20.
《Electroanalysis》2003,15(17):1349-1363
Diamond as a high performance material occupies a special place due to its in many ways extreme properties, e.g., hardness, chemical inertness, thermal conductivity, optical properties, and electric characteristics. Work mainly over the last decade has shown that diamond also occupies a special place as an electrode material with interesting applications in electroanalysis. When made sufficiently electrically conducting for example by boron‐doping, ‘thin film' and ‘free–standing' diamond electrodes exhibit remarkable chemical resistance to etching, a wide potential window, low background current responses, mechanical stability towards ultrasound induced interfacial cavitation, a low ‘stickiness' in adsorption processes, and a high degree of ‘tunability' of the surface properties. This review summarizes some of the recent work aimed at applying conductive (boron‐doped) diamond electrodes to improve procedures in electroanalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号