首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nicotinic acetylcholine receptor (nAChR) is a member of the ligand-gated ion channel family and is implicated in many neurological events. Yet, the receptor is difficult to target without high-resolution structures. In contrast, the structure of the acetylcholine binding protein (AChBP) has been solved to high resolution, and it serves as a surrogate structure of the extra-cellular domain in nAChR. Here we conduct a virtual screening study of the AChBP using the relaxed–complex method, which involves a combination of molecular dynamics simulations (to achieve receptor structures) and ligand docking. The library screened through comes from the National Cancer Institute, and its ligands show great potential for binding AChBP in various manners. These ligands mimic the known binders of AChBP; a significant subset docks well against all species of the protein and some distinguish between the various structures. These novel ligands could serve as potential pharmaceuticals in the AChBP/nAChR systems.  相似文献   

2.
Weak toxins are the "three-fingered" snake venoms toxins grouped together by having an additional disulfide in the N-terminal loop I. In general, weak toxins have low toxicity, and biological targets have been identified for some of them only, recently by detecting the effects on the nicotinic acetylcholine receptors (nAChR). Here the methods of docking and molecular dynamics simulations are used for comparative modeling of the complexes between four weak toxins of known spatial structure (WTX, candoxin, bucandin, gamma-bungarotoxin) and nAChRs. WTX and candoxin are those toxins whose blocking of the neuronal alpha7- and muscle-type nAChR has been earlier shown in binding assays and electrophysiological experiments, while for the other two toxins no such activity has been reported. Only candoxin and WTX are found here to give stable solutions for the toxin-nAChR complexes. These toxins appear to approach the binding site similarly to short alpha-neurotoxins, but their final position resembles that of alpha-cobratoxin, a long alpha-neurotoxin, in the complex with the acetylcholine-binding protein. The final spatial structures of candoxin and WTX complexes with the alpha7 neuronal or muscle-type nAChR are very similar and do not provide immediate answer why candoxin has a much higher affinity than WTX, but both of them share a virtually irreversible mode of binding to one or both these nAChR subtypes. Possible explanation comes from docking and MD simulations which predict fast kinetics of candoxin association with nAChR, no gross changes in the toxin conformation (with smaller toxin flexibility on alpha7 nAChR), while slow WTX binding to nAChR is associated with slow irreversible rearrangement both of the tip of the toxin loop II and of the binding pocket residues locking finally the toxin molecule. Computer modeling showed that the additional disulfide in the loop I is not directly involved in receptor binding of WTX and candoxin, but it stabilizes the structure of loop I which plays an important role in toxin delivery to the binding site. In summary, computer modeling visualized possible modes of binding for those weak toxins which interact with the nAChR, provided no solutions for those weak toxins whose targets are not the nAChRs, and demonstrated that the additional disulfide in loop I cannot be a sound criteria for joining all weak toxins into one group; the conclusion about the diversity of weak toxins made from computer modeling is in accord with the earlier phylogenetic analysis.  相似文献   

3.
Five homology models for honeybee (Apis mellifera) nicotinic acetylcholine receptor (nAChR) alpha1/beta1, alpha3/beta2, alpha4/beta2, alpha6/beta2 and alpha9/alpha9 subtypes were built from the Torpedo marmorata nAChR X-ray structure. Then, imidacloprid, fipronil and their metabolites were docked into the ligand binding domain (LBD) of these receptors and the corresponding scoring functions were calculated. The binding modes of the docked compounds were carefully analysed. Finally, multivariate analyses were used for deriving structure-activity relationships based on hydrogen bond number and scoring functions between the insecticides and the nAChR models.  相似文献   

4.
The ligand binding/unbinding process is critical to our understanding of the pharmacology of both the nicotinic acetylcholine receptor (nAChR) and the acetylcholine binding protein (AChBP). Steered molecular dynamics simulations were performed to learn about the unbinding process of the full agonist nicotine. Three different pulling models were designed to investigate the possible binding/unbinding pathways: radial and tangent models, and also a mixed model. Of the three, the tangent pulling model finally failed to dissociate nicotine from the ligand binding pocket. The efficiency of the pulling force profiles was superior, and the opening of the C-loop was smaller in the mixed pulling model than that in the radial model. The most favorable pathway for the cholinergic agonist nicotine to enter or leave the binding pocket is through the principal binding side, following a curvilinear track. Noticeably, it has been seen that the unbinding of the nicotine is concomitant with a global rotation of the protein-ligand complex which could be caused by the interactions of the ligand with protein at the tangent direction.  相似文献   

5.
Nicotinic acetylcholine receptors (nAChRs), which are responsible for mediating key physiological functions, are ubiquitous in the central and peripheral nervous systems. As members of the Cys loop ligand-gated ion channel family, neuronal nAChRs are pentameric, composed of various permutations of α (α2 to α10) and β (β2 to β4) subunits forming functional heteromeric or homomeric receptors. Diversity in nAChR subunit composition complicates the development of selective ligands for specific subtypes, since the five binding sites reside at the subunit interfaces. The acetylcholine binding protein (AChBP), a soluble extracellular domain homologue secreted by mollusks, serves as a general structural surrogate for the nAChRs. In this work, homomeric AChBPs from Lymnaea and Aplysia snails were used as in situ templates for the generation of novel and potent ligands that selectively bind to these proteins. The cycloaddition reaction between building-block azides and alkynes to form stable 1,2,3-triazoles was used to generate the leads. The extent of triazole formation on the AChBP template correlated with the affinity of the triazole product for the nicotinic ligand binding site. Instead of the in situ protein-templated azide-alkyne cycloaddition reaction occurring at a localized, sequestered enzyme active center as previously shown, we demonstrate that the in situ reaction can take place at the subunit interfaces of an oligomeric protein and can thus be used as a tool for identifying novel candidate nAChR ligands. The crystal structure of one of the in situ-formed triazole-AChBP complexes shows binding poses and molecular determinants of interactions predicted from structures of known agonists and antagonists. Hence, the click chemistry approach with an in situ template of a receptor provides a novel synthetic avenue for generating candidate agonists and antagonists for ligand-gated ion channels.  相似文献   

6.
The neuronal alpha4beta2 nicotinic acetylcholine receptor (nAChR) is one of the most widely expressed nAChR subtypes in the brain. Its subunits have high sequence identity (54 and 46% for alpha4 and beta2, respectively) with alpha and beta subunits in Torpedo nAChR. Using the known structure of the Torpedo nAChR as a template, the closed-channel structure of the alpha4beta2 nAChR was constructed through homology modeling. Normal-mode analysis was performed on this closed structure and the resulting lowest frequency mode was applied to it for a "twist-to-open" motion, which increased the minimum pore radius from 2.7 to 3.4 A and generated an open-channel model. Nicotine could bind to the predicted agonist binding sites in the open-channel model but not in the closed one. Both models were subsequently equilibrated in a ternary lipid mixture via extensive molecular dynamics (MD) simulations. Over the course of 11 ns MD simulations, the open channel remained open with filled water, but the closed channel showed a much lower water density at its hydrophobic gate comprised of residues alpha4-V259 and alpha4-L263 and their homologous residues in the beta2 subunits. Brownian dynamics simulations of Na+ permeation through the open channel demonstrated a current-voltage relationship that was consistent with experimental data on the conducting state of alpha4beta2 nAChR. Besides establishment of the well-equilibrated closed- and open-channel alpha4beta2 structural models, the MD simulations on these models provided valuable insights into critical factors that potentially modulate channel gating. Rotation and tilting of TM2 helices led to changes in orientations of pore-lining residue side chains. Without concerted movement, the reorientation of one or two hydrophobic side chains could be enough for channel opening. The closed- and open-channel structures exhibited distinct patterns of electrostatic interactions at the interface of extracellular and transmembrane domains that might regulate the signal propagation of agonist binding to channel opening. A potential prominent role of the beta2 subunit in channel gating was also elucidated in the study.  相似文献   

7.
The structure of peptide p6.7, a mimotope of the nicotinic receptor ligand site that binds alpha-bungarotoxin and neutralizes its toxicity, was compared to that of the acetylcholine binding protein. The central loop of p6.7, when complexed with alpha-bungarotoxin, fits the structure of the acetylcholine binding protein (AChBP) ligand site, whereas peptide terminal residues seem to be less involved in toxin binding. The minimal binding sequence of p6.7 was confirmed experimentally by synthesis of progressively deleted peptides. Affinity maturation was then achieved by random addition of residues flanking the minimal binding sequence and by selection of new alpha-bungarotoxin binding peptides on the basis of their dissociation kinetic rate. The tetra-branched forms of the resulting high-affinity peptides were effective as antidotes in vivo at a significantly lower dose than the tetra-branched lead peptide.  相似文献   

8.
The destruction of crops by invertebrate pests is a major threat against a background of a continuously rising demand in food supply for a growing world population. Therefore, efficient crop protection measures in a vast range of agricultural settings are of utmost importance to guarantee sustainable yields. The discovery of synthetic agonists selectively addressing the nicotinic acetylcholine receptors (nAChRs), located in the central nervous system of insects, for use as insecticides was a major milestone in applied crop protection research. These compounds, as a result of their high target specificity and versatility in application methods, opened a new innovative era in the control of some of the world′s most devastating insect pests. These insecticides also contributed massively to extending our knowledge of the biochemistry of insect nicotinic acetylcholine receptors. The global economic success of synthetic nAChR agonists as insecticides renders the nicotinic acetylcholine receptor still one of the most attractive target sites for exploration in insecticide discovery.  相似文献   

9.
Recent crystal structures of the acetylcholine binding protein (AChBP) have revealed surprisingly small structural alterations upon ligand binding. Here we investigate the extent to which ligand binding may affect receptor dynamics. AChBP is a homologue of the extracellular component of ligand-gated ion channels (LGICs). We have previously used an elastic network normal-mode analysis to propose a gating mechanism for the LGICs and to suggest the effects of various ligands on such motions. However, the difficulties with elastic network methods lie in their inability to account for the modest effects of a small ligand or mutation on ion channel motion. Here, we report the successful application of an elastic network normal mode technique to measure the effects of large ligand binding on receptor dynamics. The present calculations demonstrate a clear alteration in the native symmetric motions of a protein due to the presence of large protein cobratoxin ligands. In particular, normal-mode analysis revealed that cobratoxin binding to this protein significantly dampened the axially symmetric motion of the AChBP that may be associated with channel gating in the full nAChR. The results suggest that alterations in receptor dynamics could be a general feature of ligand binding.  相似文献   

10.
Acetylcholine was the first neurotransmitter described. The receptors targeted by acetylcholine are found within organisms spanning different phyla and position themselves as very attractive targets for predation, as well as for defense. Venoms of snakes within the Elapidae family, as well as those of marine snails within the Conus genus, are particularly rich in proteins and peptides that target nicotinic acetylcholine receptors (nAChRs). Such compounds are invaluable tools for research seeking to understand the structure and function of the cholinergic system. Proteins and peptides of venomous origin targeting nAChR demonstrate high affinity and good selectivity. This review aims at providing an overview of the toxins targeting nAChRs found within venoms of different animals, as well as their activities and the structural determinants important for receptor binding.  相似文献   

11.
Summary Anatoxin-a (AnTX) is a highly potent agonist acting at the nicotinic acetylcholine receptor (nAChR) and represents a valuable tool in the study of this receptor. Molecular mechanics, semi-empirical and ab initio molecular orbital energy minimization procedures were conducted to investigate the conformation of AnTX. For each minimization procedure, the s-trans enone isomer of protonated AnTX was the energetically favoured conformer due to intramolecular electrostatic interactions. Our studies are discussed in the light of previous experimental observations and conformational studies, in addition to their importance in the development of future pharmacophore models for nAChR agonist binding.  相似文献   

12.
<正>Homology models of the ligand binding domain of the wild-type and Y151S mutant brown planthopper {Nilaparvata lugens)α1 and rat(Rattus norvegicus)β2 nicotinic acetylcholine receptor(nAChR) subunits were generated based on the crystal structure of acetylcholine binding protein of Lymnaea stagnalis.Neonicotinoid insecticide imidacloprid was docked into the putative binding site of wild-type and mutantα1β2 dimeric receptors by Surflex-docking,and the calculated docking energies were in agreement with experimental results.The resistance mechanisms and corresponding binding modes of imidacloprid on nAChRs containing the Y151S target-site mutation were discussed.  相似文献   

13.
Understanding the mechanisms of gating and ion permeation in biological channels and receptors has been a long-standing challenge in biophysics. Recent advances in structural biology have revealed the architecture of a number of transmembrane channels and allowed detailed, molecular-level insight into these systems. Herein, we have examined the barriers to ion conductance and origins of ion selectivity in models of the cationic human alpha7 nicotinic acetylcholine receptor (nAChR) and the anionic alpha1 glycine receptor (GlyR), based on the structure of Torpedo nAChR. Molecular dynamics simulations were used to determine water density profiles along the channel length, and they established that both receptor pores were fully hydrated. The very low water density in the middle of the nAChR pore indicated the existence of a hydrophobic constriction. By contrast, the pore of GlyR was lined with hydrophilic residues and remained well-hydrated throughout. Adaptive biasing force simulations allowed us to reconstruct potentials of mean force (PMFs) for chloride and sodium ions in the two receptors. For the nicotinic receptor we observed barriers to ion translocation associated with rings of hydrophobic residues-Val13' and Leu9'-in the middle of the transmembrane domain. This finding further substantiates the hydrophobic gating hypothesis for nAChR. The PMF revealed no significant hydrophobic barrier for chloride translocation in GlyR. For both receptors nonpermeant ions displayed considerable barriers. Thus, the overall electrostatics and the presence of rings of charged residues at the entrance and exit of the channels were sufficient to explain the experimentally observed anion and cation selectivity.  相似文献   

14.
Activity-based protein profiling (ABPP) has been used extensively to characterize the physiological functions of enzymes but has not yet been extended to ion channels. We have synthesized a state-dependent photoaffinity probe for the nicotinic acetylcholine receptor (nAChR) as a proof of concept for the development of ion channel directed ABPP probes. The candidate probe BPyneTEA comprises an nAChR binding moiety, a benzophenone moiety for photolabeling, and an alkyne moiety for biotinylation via "click chemistry". Single-molecule current measurements show that BPyneTEA blocks both the closed and open (i.e., nondesensitized) conformations of the nAChR with similar kinetics. In living cells, BPyneTEA photolabels the closed state selectively over the inactive desensitized state. BPyneTEA thus shows promise as a probe for nondesensitized nAChRs and may be useful in studying the molecular physiology of desensitization. The structure and reactivity of ion channel pores in general suggest that they will be a broadly useful target for ABPP probes.  相似文献   

15.
Three NMR structures of alpha-conotoxin MI, a potent antagonist of the nicotinic acetylcholine receptor, have been refined using molecular dynamics (MD) simulation with explicit water. Although the convergence of the NMR structures of alpha-conotoxin MI was not sufficient to provide detailed structural features, the average structures obtained from MD simulations converged to one conformation, providing structural characteristics. The resulting structure was also found to be consistent with the results of amide proton-exchange experiments. These results demonstrate that MD simulation with explicit solvent water is very useful in refining NMR structures.  相似文献   

16.
To make further studies on the difference of cis-nitenpyram analogues, a series of cis-nitenpyram com- pounds containing a flexible amido segment anchored on tetrahydropyrimidine ring was designed and synthesized. Preliminary bioassays indicate that all the analogues exhibit a mortality of 100% at 100 rag/L, and the analogue 4d shows the best activity against Nilaparvata lugens and Myzus persicae, with a mortality of 100% at 4 mg/L (LCs0=0.172 rag/L). The structure activity relationship studies show that insecticidal activities of the analogues are affected by the kinds and size of substituent R. In addition, the molecular docking simulations reveal that compouds 4 with a flexible amido segment on tetrahydropyrimidine ring show their different binding affinities for the nicotinic acetyleholine receptor(nAChR) of insect and compoud 4d shows stronger hydrogen-bonding with nAChR, which may provide the structure-activity relationship observed in vitro.  相似文献   

17.
Slow-channel congenital myasthenic syndromes (SCCMSs) are rare genetic diseases caused by mutations in muscle nicotinic acetylcholine receptor (nAChR) subunits. Most of the known SCCMS-associated mutations localize at the transmembrane region near the ion pore. Only two SCCMS point mutations are at the extracellular domains near the acetylcholine binding site, α1(G153S) being one of them. In this work, a combination of molecular dynamics, targeted mutagenesis, fluorescent Ca2+ imaging and patch-clamp electrophysiology has been applied to G153S mutant muscle nAChR to investigate the role of hydrogen bonds formed by Ser 153 with C-loop residues near the acetylcholine-binding site. Introduction of L199T mutation to the C-loop in the vicinity of Ser 153 changed hydrogen bonds distribution, decreased acetylcholine potency (EC50 2607 vs. 146 nM) of the double mutant and decay kinetics of acetylcholine-evoked cytoplasmic Ca2+ rise (τ 14.2 ± 0.3 vs. 34.0 ± 0.4 s). These results shed light on molecular mechanisms of nAChR activation-desensitization and on the involvement of such mechanisms in channelopathy genesis.  相似文献   

18.
Nicotinic acetylcholine receptors (nAChRs) are membrane-bound, pentameric ligand-gated ion channels associated with a variety of human disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, and pain. Most known nAChRs contain an unusual eight-membered disulfide-containing cysteinyl-cysteine ring, ox-[Cys-Cys], as does the soluble acetylcholine binding protein (AChBP) found in the snail Lymnaea stagnalis. The cysteinyl-cysteine ring is located in a region implicated in ligand binding, and conformational changes involving this ring may be important for modulation of nAChR function. We have studied the preferred conformations of Ac-ox-[Cys-Cys]-NH2 by NMR in water and computationally by Monte Carlo simulations using the OPLS-AA force field and GB/SA water model. ox-[Cys-Cys] adopts four distinct low-energy conformers at slightly above 0 degrees C in water. Two populations are dependent on the peptide omega2 dihedral angle, with the trans amide favored over the cis amide by a ratio of ca. 60:40. Two ox-[Cys-Cys] conformers with a cis amide bond (C+ and C-) differ from each other primarily by variation of the chi3 dihedral angle, which defines the orientation of the helicity about the S-S bond (+/- 90 degrees ). Two trans amide conformers have the same S-S helicity (chi3 approximately -90 degrees ), but are distinguished by a backbone rotation about phi2 and psi1 (T- and T'-). The ratio of T-/T'-/C+/C- is 47:15:29:9. The orientation of the pendant moieties from the eight-membered ring is more compact for the major trans conformer (T-) than for the extended conformations adopted by T'-, C+, and C-. These conformational preferences are also observed in tetrapeptide and undecapeptide fragments of the human alpha7 subtype of the nAChR that contains the ox-[Cys-Cys] unit. Conformer T- is nearly identical to the conformation seen in the X-ray structure of ox-[Cys(187)-Cys(188)] found in the unliganded AChBP, and is a Type VIII beta-turn.  相似文献   

19.
Buchapudi K  Xu X  Ataian Y  Ji HF  Schulte M 《The Analyst》2012,137(1):263-268
A potential binding assay based on binding-driven micromechanical motion is described. Acetylcholine binding protein (AChBP) was used to modify a microcantilever. The modified microcantilever was found to bend on application of the naturally occurring agonist (acetylcholine) or the antagonist (nicotine and d-tubocurarine). Control experiments show that microcantilevers modified without AChBP do not respond to acetylcholine, nicotine, and d-tubocurarine. K(d) values obtained for acetylcholine, nicotine, and d-tubocurarine are similar to those obtained from radio-ligand binding assays. These results suggest that the microcantilever system has potential for use in label free, drug screening applications.  相似文献   

20.
A large series of pharmacological agents, distinct from the typical competitive antagonists, block in a noncompetitive manner the permeability response of the nicotinic acetylcholine receptor (nAChR) to the neurotransmitter acetylcholine. Taking the neuroleptic chlorpromazine (CPZ) as an example of such agents, the blocking mechanism of noncompetitive inhibitors to the ion channel pore of the nAChR has been explored at the atomic level using both conventional and steered molecular dynamics (MD) simulations. Repeated steered MD simulations have permitted calculation of the free energy (approximately 36 kJ/mol) of CPZ binding and identification of the optimal site in the region of the serine and leucine rings, at approximately 4 A from the pore entrance. Coulomb and the Lennard-Jones interactions between CPZ and the ion channel as well as the conformational fluctuations of CPZ were examined to assess the contribution of each to the binding of CPZ to the nAChR. The MD simulations disclose a dynamic interaction of CPZ binding to the nAChR ionic channel. The cationic ammonium head of CPZ forms strong hydrogen bonds with Glu262 (alpha), Asp268 (beta), Glu272 (beta), Ser276 (beta), Glu280 (delta), Gln271 (gamma), Glu275 (gamma), and Asn279 (gamma) nAChR residues. Finally, the conventional MD simulation of CPZ at its identified binding site demonstrates that the binding of CPZ not only blocks ion transport through the channel but also markedly inhibits the conformational transitions of the channel, necessary for nAChR to carry out its biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号