首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
化学   24篇
力学   1篇
数学   1篇
物理学   6篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   4篇
  2004年   3篇
  2002年   1篇
  2000年   6篇
  1999年   1篇
  1996年   1篇
  1995年   3篇
  1992年   2篇
  1988年   1篇
  1978年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
The reaction between TiO(2+) and ONOOH in 0.9 M H(2)SO(4) provides evidence for direct formation, previously unobserved, of a HOONO-metal complex. The reaction proceeds via formation of an end-on complex (k = 3.0 x 10(2) M(-1) s(-1)) that rearranges to form a side-on complex (k approximately equal to 20 s(-1)). With ONOOH in excess, this rearrangement proceeds more slowly (k approximately equal to 0.1 s(-1)), probably because multiple hydrogen oxoperoxonitrate molecules form end-on complexes with oxotitanium(IV) and hinder rearrangement to the side-on complex. The absorption spectrum of the final product is that of TiO(2)(2+). Presumably, during the rearrangement or later, NO+ is lost.  相似文献   
2.
The decay of peroxynitrite [O=NOO(-), oxoperoxonitrate(1-)] was examined as a function of concentration (0.050-2.5 mM), temperature (5-45 degrees C), and pH (2.2-10.0). Below 5 degrees C and pH 7, little amounts of the decomposition products nitrite and dioxygen are formed, even when the peroxynitrite concentration is high (2.5 mM). Instead, approximately > or =90% isomerizes to nitrate. At higher pH, decomposition increases at the expense of isomerization, up to nearly 80% at pH 10.0 at 5 degrees C and 90% at 45 degrees C. Much less nitrite and dioxygen per peroxynitrite are formed when the peroxynitrite concentration is lower; at 50 microM and pH 10.2, < or =40% decomposes. In contrast to two other reports (Pfeiffer, S.; Gorren, A. C. F.; Schmidt, K.; Werner, E. R.; Hansert, B.; Bohle, D. S.; Mayer, B. J. Biol. Chem. 1997, 272, 3465-3470, and Coddington, J. W.; Hurst, J. K.; Lymar, S. V. J. Am. Chem. Soc. 1999, 121, 2438-2443), we find that the extent of decomposition is dependent on the peroxynitrite concentration.  相似文献   
3.
Electrode potentials for every intermediate in the cytochrome P450 cycle were estimated and evaluated by means of an oxidation state diagram. By this approach, and within the uncertainties of the approximations, the superoxide complex of cytochrome P450 at pH 7 is oxidizing: E degrees ' (P450FeO(2)2+, H+/P450FeOOH2+) = +0.93 V, and the Gibbs energy for the reaction of the hydroperoxo complex of cytochrome P450 to form compound I and water, P450FeOOH2+ + H+ = P450FeO2+ por(*+) + H2O, is 0 kJ/mol. Although cytochrome P450FeOOH2+ and cytochrome P450FeO2+ por(*+) are approximately isoenergetic, they are likely to react at different rates with substrates and may yield different products. Homolysis of the hydroperoxo complex of cytochrome P450 to compound II and the hydroxyl radical, P450FeOOH2+ = P450FeO2+ + HO(*), is unfavorable (DeltaG degrees ' = +92 kJ/mol), as is the dissociation into HOO- and cytochrome P450Fe3+ (+73 kJ/mol). It is shown that the sum of the Gibbs energy of association for cytochrome P450Fe3+ with the hydroperoxo anion and the Gibbs energy for the one-electron reduction of cytochrome P450FeOOH2+, relative to NHE, is constant (-203 kJ/mol). While the estimated E degrees ' (P450FeO(2)2+, H+/P450FeOOH2+) = +0.93 V at pH 7 is larger than necessary to effect reduction of cytochrome P450FeO(2)2+, the magnitude of this electrode potential implies that the binding constant for cytochrome P450Fe3+ with hydrogen peroxide is ca. 3 x 106 M(-1) at pH 7. An association constant of this magnitude ensures that a fraction of cytochrome P450FeOOH2+ is available to form compound I or to react with substrates directly, while a larger one would imply that compound I is too weak an oxidant. In general, the energetics of the reduction of dioxygen to water determines the energetics of catalysis of hydroxylations by cytochrome P450. These results enable calibration of energy levels obtained for intermediates in the cytochrome P450 reaction cycle obtained by ab initio calculations and provide insights into the catalytic efficiency of cytochrome P450 and guidelines for the development of competent hydroxylation catalysts.  相似文献   
4.
Coherent dynamic x-ray scattering has been used to study the thermally excited layer fluctuations in freely suspended smectic films of the compound 4O.8. Using 8-keV x rays and films with a thickness around 0.3 &mgr;m we resolve relaxation times down to a few &mgr;s. A combination of damped and oscillatory behavior is observed for the layer undulations, which can be attributed to inertial effects. These are due to the surface contribution to the free energy which cannot be disregarded for thin films.  相似文献   
5.
6.
The procedure for assigning names to elements by the International Union of Pure and Applied Chemistry involves establishing priority of discovery, then inviting the discoverers to suggest a name. This protocol is in contrast with the suggestions of Friedrich A. Paneth form 1947, who believed that the discoverers of an element have the undisputed right to name it. This difference in philosophy came to light during a workshop convened 10 years ago for the purpose of naming elements 104–109, when the discoverers of these elements contended that they were solely entitled to name them. During the debate, and in support of the name seaborgium for element 106, it was argued that gadolinium, samarium, gallium, einsteinium and fermium had been named after living scientists. The history of the naming of these elements demonstrates that this is not the case; Glenn T. Seaborg is the first scientist for whom an element was named during his lifetime.  相似文献   
7.
8.
Manganese(III)-meso-tetraphenylporphyrin [Mn(TPP)] and manganese(III)-meso-tetrakis(pentafluorophenyl)porphyrin [Mn(TPFPP)] catalyse the epoxidation of cyclooctene by IO(4)(-) in the presence of excess imidazoles, in both dry CH(2)Cl(2) and CH(2)Cl(2) saturated with H(2)O. The reaction rates of the electron deficient Mn(TPFPP) are a factor 24 less than those of Mn(TPP); however, the former increases 15-30 times in the presence of water, while those of Mn(TPP) do so by a factor of 2-3. The most striking catalytic enhancement caused by the addition of water was observed with 2-methylimidazole and Mn(TPFPP). As deprotonation of imidazoles may play a significant role in the presence of water, we found that manganese(III)-meso-tetrakis(phenyl-4-sulfonato)porphyrin [Mn(TPPS)] decreases the NH proton pK(a) of axially coordinated imidazole from 14.2 to 9.5. We conclude that the imidazole ligand is partially deprotonated in the presence of water. The latter enables the solvation of imidazolium ions that are formed simultaneously. The imidazolate form of the co-catalyst is a much stronger donor than the imidazole itself, providing electron density to Mn(III) and thus promoting oxygen transfer. The failure of N-methylimidazole to increase the reaction rates upon addition of water supports this hypothesis. A functionally related deprotonation has been shown to occur in horseradish peroxidase (J. S. de Ropp, V. Thanabal, G. N. La Mar, J. Am. Chem. Soc. 1985, 107, 8270-8272) and in chlorite dismutase (B. R. Goblirsch, B. R. Streit, J. L. Dubois, C. M. Wilmot, J. Biol. Inorg. Chem. 2010, 15, 879-888). Mn(III)porphyrins in combination with imidazoles and water constitute a functional biomimetic model of peroxidases.  相似文献   
9.
Peroxynitrous acid was reduced by cathodic linear sweep voltammetry at a gold electrode and by iodide at pH 3.2 and 5.6. The cathodic reduction wave was identified by measuring its decay in time, which was the same as observed by optical spectroscopy. The iodide oxidation was followed by optical measurement of the triiodide formation. Both reductions show one-electron stoichiometry, with the product n(alpha)alpha = 0.23 +/- 0.04 from the electrochemical experiments, in which alpha is the transfer coefficient and n(alpha) the number of electrons transferred, and an diiodine yield of ca. 0.5 equiv per equivalent of peroxynitrous acid. The voltammetric reduction was irreversible up to scan rates of 80 V s(-1). Both reductions were pH independent in the range studied. The voltammetric reduction is most likely an irreversible elemental reaction followed by a chemical decay that cannot be observed directly. Because of the pH independence, we conclude that both reductions have a common short-lived intermediate, namely [HOONO]*-. We estimate the electrode potential of the likely ONOOH/ONOOH*- couple to be larger than 1 V. The commonly used electrode potential E degrees (ONOOH, H+/NO2*, H2O) does not describe the chemistry of peroxynitrous acid.  相似文献   
10.
In contrast to the terminal phosphinidene complex PhPW(CO)(5) (2), which adds to [5]metacyclophane (1) in a 1,4-fashion, dichlorocarbene preferentially adds in a 1,2-fashion to the formal "anti-Bredt" type double bond of the aromatic ring of 1 to afford the norcaradiene 11b, which immediately rearranges to the bridged cycloheptatriene 12b and further by a [1,5] sigmatropic chlorine migration to the isomeric 13b as the first observable product. More slowly, the latter isomerizes via a dissociative mechanism to give 15b. A computational study supports the notion that the [1,5] chlorine migration in the rearrangement 12b --> 13b, for which an activation barrier of 70.2 kJ mol(-)(1) was calculated, is essentially concerted with minor charge separation. In contrast, the analogous [1,5] chlorine migration in the flat model compound 7,7-dichlorocycloheptatriene (12a) displays features of a dissociative pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号