首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porphyrin-manganese(V)-oxo and porphyrin-manganese(IV)-oxo species were produced in organic solvents by laser flash photolysis (LFP) of the corresponding porphyrin-manganese(III) perchlorate and chlorate complexes, respectively, permitting direct kinetic studies. The porphyrin systems studied were 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPFPP), and 5,10,15,20-tetrakis(4-methylpyridinium)porphyrin (TMPyP). The order of reactivity for (porphyrin)Mn(V)(O) derivatives in self-decay reactions in acetonitrile and in oxidations of substrates was (TPFPP) > (TMPyP) > (TPP). Representative rate constants for reaction of (TPFPP)Mn(V)(O) in acetonitrile are k = 6.1 x 10(5) M(-1) s(-1) for cis-stilbene and k = 1.4 x 10(5) M(-1) s(-1) for diphenylmethane, and the kinetic isotope effect in oxidation of ethylbenzene and ethylbenzene-d(10) is k(H)/k(D) = 2.3. Competitive oxidation reactions conducted under catalytic conditions display approximately the same relative rate constants as were found in the LFP studies of (porphyrin)Mn(V)(O) derivatives. The apparent rate constants for reactions of (porphyrin)Mn(IV)(O) species show inverted reactivity order with (TPFPP) < (TMPyP) < (TPP) in reactions with cis-stilbene, triphenylamine, and triphenylphosphine. The inverted reactivity results because (porphyrin)Mn(IV)(O) disproportionates to (porphyrin)Mn(III)X and (porphyrin)Mn(V)(O), which is the primary oxidant, and the equilibrium constants for disproportionation of (porphyrin)Mn(IV)(O) are in the order (TPFPP) < (TMPyP) < (TPP). The fast comproportionation reaction of (TPFPP)Mn(V)(O) with (TPFPP)Mn(III)Cl to give (TPFPP)Mn(IV)(O) (k = 5 x 10(8) M(-1) s(-1)) and disproportionation reaction of (TPP)Mn(IV)(O) to give (TPP)Mn(V)(O) and (TPP)Mn(III)X (k approximately 2.5 x 10(9) M(-1) s(-1)) were observed. The relative populations of (porphyrin)Mn(V)(O) and (porphyrin)Mn(IV)(O) were determined from the ratios of observed rate constants for self-decay reactions in acetonitrile and oxidation reactions of cis-stilbene by the two oxo derivatives, and apparent disproportionation equilibrium constants for the three systems in acetonitrile were estimated. A model for oxidations under catalytic conditions is presented.  相似文献   

2.
Studying the axial ligation behavior of metalloporphyrins with nitrogenous bases helps to better understand not only the biological function of heme‐based protein systems, but also the catalytic properties of porphyrin‐based reaction sites in other biomimetic synthetic support environments. Unlike iron porphyrin complexes, little is known about the axial ligation behavior of Mn porphyrins, particularly in the solid state with Mn in the +3 oxidation state. Here, we present the syntheses and crystal and molecular structures of three new high‐spin manganese(III) porphyrin complexes with the different amine‐based axial ligands imidazole (im), piperidine (pip), and 1,4‐diazabicyclo[2.2.2]octane (DABCO), namely bis(imidazole)(5,10,15,20‐tetraphenylporphyrinato)manganese(III) chloride chloroform disolvate, [Mn(C44H28N4)(C3H4N2)2]Cl·2CHCl3 or [Mn(TPP)(im)2]Cl·2CHCl3 (TPP = 5,10,15,20‐tetraphenylporphyrin), (I), bis(piperidine)(5,10,15,20‐tetraphenylporphyrinato)manganese(III) chloride, [Mn(C44H28N4)(C5H11N)2]Cl or [Mn(TPP)(pip)2]Cl, (II), and chlorido(1,4‐diazabicyclo[2.2.2]octane)(5,10,15,20‐tetraphenylporphyrin)manganese(III)–1,4‐diazabicyclo[2.2.2]octane–toluene–water (4/4/4/1), [Mn(C44H28N4)Cl(C6H12N2)]·C6H12N2·C7H8·0.25H2O or [Mn(TPP)Cl(DABCO)]·(DABCO)·(toluene)·0.25H2O, (IV). A fourth complex, chlorido(pyridine)(5,10,15,20‐tetraphenylporphryinato)manganese(III) pyridine disolvate, [Mn(C44H28N4)Cl(C5H5N)]·2C5H5N or [Mn(TPP)Cl(py)]·2(py), (III), acquired using different crystallization methods from published data, is also reported and compared to the previous structures.  相似文献   

3.
用分光光度法研究了咪唑或吡啶类配体与5-[邻-(4-(1-咪唑基)丁氧基)苯基]-10,15,20-三苯基卟啉合铁(III)氯化物[[Fe^I^I^I(ImTPP)]Cl]和5-[对-(4-(3-吡啶氧基)丁氧基)苯基]10,15,20-三苯基卟啉合铁(III)氯化物[[Fe^I^I^I(PyTPP)]Cl]两种尾式铁(III)卟啉的轴向加合作用, 测定了平衡常数、热力学参数及含氮配体的加合分子数。结果表明, [Fe^I^I^I(PyTPP)Cl与[Fe^I^I^I(TPP)]Cl相类似, 均与咪唑、吡啶类配体生成1:2低自旋六配位加合物。含氮配体与[Fe^I^I^I(ImTPP)]Cl的轴向加合反应平衡常数比与{Fe^I^I^I(TPP)]Cl相应的平衡常数大10-10^3倍, 这是因为含氮配体与[Fe^I^I^I(ImTPP)]Cl的轴向配位诱导了尾端咪唑基与配合物中的Fe^I^I^I离子的轴向配位, 这种配位横式增强了含氮配体与Fe^I^I^I离子的键合; 尾端咪唑基与配合物中的Fe^I^I^I离子配位的模式得到了UV-vis、^1H NMR及EPR实验数据的进一步证实。  相似文献   

4.
A [(P)Fe(III)-Mn(II)] bimetallic complex, mimicking the active site of manganese peroxidase, has been synthesized. A modified highly fluorinated porphyrin, 5,10,15-tris(pentafluorophenyl)-20-(o-aminophenyl)porphyrin, has been used to introduce, through a short spacer linked to the amino function, a manganese auxiliary ligand, 6-aminomethyl-2,2'-bipyridine. Two successive metalations by FeCl(2) and MnCl(2) afforded the [(P)Fe(III)-Mn(II)] bimetallic complex that has been characterized by elemental analysis and FAB(+) mass spectrometry. X-band EPR spectroscopy and magnetic susceptibility measurements were in agreement with two high spin Fe(III) and Mn(II) centers without magnetic exchange interaction. Moreover, there is no higher intermolecular association through &mgr;-chloro bridging as observed by EPR with a simpler chloromanganese complex, Mn(bipy)(2)Cl(2), at high concentration. Addition of pentafluoroiodosobenzene in methanol at 0 degrees C led to the progressive and complete disappearance of the EPR Mn(II) signals, that were recovered after addition of a phenol. This result is consistent with Mn(III) formation. This production of Mn(III) requires the presence of the iron porphyrin and is proposed to occur through the intermediate formation of a Fe(IV) dimethoxide species which can be related to the oxidation of Mn(II) catalyzed by manganese peroxidase compound II.  相似文献   

5.
Model ferric heme nitrosyl complexes, [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+), where TPP is the dianion of 5,10,15,20-tetrakis-phenyl-porphyrin and TPFPP is the dianion of 5,10,15,20-tetrakis-pentafluorophenyl-porphyrin, have been obtained as isolated species by the gas phase reaction of NO with [Fe(III)(TPP)](+) and [Fe(III) (TPFPP)](+) ions delivered in the gas phase by electrospray ionization, respectively. The so-formed nitrosyl complexes have been characterized by vibrational spectroscopy also exploiting (15)N-isotope substitution in the NO ligand. The characteristic NO stretching frequency is observed at 1825 and 1859 cm(-1) for [Fe(III)(TPP)(NO)](+) and [Fe(III)(TPFPP)(NO)](+) ions, respectively, providing reference values for genuine five-coordinate Fe(III)(NO) porphyrin complexes differing only for the presence of either phenyl or pentafluorophenyl substituents on the meso positions of the porphyrin ligand. The vibrational assignment is aided by hybrid density functional theory (DFT) calculations of geometry and electronic structure and frequency analysis which clearly support a singlet spin electronic state for both [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+) complexes. Both TD-DFT and CASSCF calculations suggest that the singlet ground state is best described as Fe(II)(NO(+)) and that the open-shell AFC bonding scheme contribute for a high-energy excited state. The kinetics of the NO addition reaction in the gas phase are faster for [Fe(III)(TPFPP)](+) ions by a relatively small factor, though highly reliable because of a direct comparative evaluation. The study was aimed at gaining vibrational and reactivity data on five-coordinate Fe(III)(NO) porphyrin complexes, typically transient species in solution, ultimately to provide insights into the nature of the Fe(NO) interaction in heme proteins.  相似文献   

6.
Competitive oxygenation of cyclooctene and tetralin with sodium periodate catalyzed by Mn(III)(TPP)OAc, TPP = meso-tetraphenylporphyrin; Mn(III) (TNP)OAc, TNP =meso-tetrakis(1-naphthyl) porphyrin; Mn(III) (TMP)OAc, TMP =meso-tetrakis(2,4,6-trimethyl-phenyl)porphyrin; Mn(III) (TDCPP)OAc, TDCPP =meso-tetrakis(2,6-dichlorophenyl) porphyrin, and Mn(III) (TPNMe2-TFPP)OAc, TPNMe2-TFPP =meso-tetrakis(para-NMe2-tetrafluorophenyl)porphyrin, was carried out in the presence or absence of imidazole. This study showed that, in the absence of imidazole, selectivity for epoxide formation was high with electron-rich catalysts such as Mn(TPP)OAc, Mn(TNP)OAc and Mn(TMP)OAc, but low with electron-deficient catalysts such as Mn(TDCPP)OAc and Mn(TPNMe2-TFPP)OAc. Presumably, not only the axial ligation of imidazole to the four-coordinate Mn(III)-center, but also the steric and electronic influences of aryl-substituents on the porphyrin periphery affect the selectivity of the catalytic oxidation reaction.  相似文献   

7.
Reactions of [Fe(TPFPP)] (TPFPP = meso-tetrakis(pentafluorophenyl)porphyrinato dianion) with diazo compounds N(2)C(Ph)R (R = Ph, CO(2)Et, CO(2)CH(2)CH=CH(2)) afforded [Fe(TPFPP)(C(Ph)R)] (R = Ph (1), CO(2)Et (2), CO(2)CH(2)CH=CH(2) (3)) in 65-70% yields. Treatment of 1 with N-methylimidazole (MeIm) gave the adduct [Fe(TPFPP)(CPh(2))(MeIm)] (4) in 65% yield. These new iron porphyrin carbene complexes were characterized by NMR and UV-vis spectroscopy, mass spectrometry, and elemental analyses. X-ray crystal structure determinations of 1.0.5C(6)H(6).0.5CH(2)Cl(2) and 4 reveal Fe=CPh(2) bond lengths of 1.767(3) (1) and 1.827(5) A (4), together with large ruffling distortions of the TPFPP macrocycle. Complexes 2 and 4 are reactive toward styrene, affording the corresponding cyclopropanes in 82 and 53% yields, respectively. Complex 1 is an active catalyst for both intermolecular cyclopropanation of styrenes with ethyl diazoacetate and intramolecular cyclopropanation of allylic diazoacetates. Reactions of 2 and 4 with cyclohexene or cumene produced allylic or benzylic C-H insertion products in up to 83% yield.  相似文献   

8.
In the present work, the dehydrogenation of 2-substituted imidazolines with sodium periodate in the presence of tetraphenylporphyrinatomanganese(III) chloride supported on polystyrene-bound imidazole, [Mn(TPP)Cl@PSI] is reported. A wide variety of 2-imidazolines were efficiently converted to their corresponding imidazoles by the [Mn(TPP)Cl@PSI]/NaIO4 catalytic system in a 1:2 CH3CN/H2O mixture under agitation with magnetic stirring. Ultrasonic irradiation enhanced the catalytic activity of this catalyst in the oxidation of 2-imidazolines and this led to shorter reaction times and higher product yields. This catalyst could be reused several times without significant loss of its catalytic activity.  相似文献   

9.
李志丽  林祥钦 《化学学报》1993,51(11):1099-1105
本文研究了氯离子滴定过程中四苯基卟啉合锰氧化过程的常规循环伏安、薄层循环伏安及现场紫外-可见光谱电化学行为。发现在1摩尔比的Cl^-存在下, 四苯基卟啉合锰经历了Mn(III)/Mn(III)环阳离子自由基及进一步氧化为环两价阳离子的过程, 并伴随有异卟啉生成的后行化学反应, 当2摩尔比的Cl^-存在时, 反应机理转变为Mn(III)/Mn(IV), Mn(IV)/Mn(IV)环阳离子自由基并伴随有异卟啉生成反应的两个氧化步骤。提出了与这一滴定过程相关的氧化还原反应机理。  相似文献   

10.
The hydrolysis of the monomeric five-coordinate (2-BzO-TPP)Mn(III)Cl complex has been investigated.(1) Evidence for the formation of the cyclic trimeric complex [(2-O-TPP)Mn(III)](3) is presented. The (1)H NMR spectroscopic evidence indicates that the trimeric manganese(III) complex has a head-to-tail cyclic trimeric structure with the pyrrolic alkoxide groups forming bridges from one macrocycle to the manganese(III) ion in the adjacent macrocycle PMn-O-PMn-O-PMn-O. The three manganese(III) porphyrin subunits are not equivalent. The characteristic upfield shift of the 3-H pyrrole resonance (-111.5 ppm at 291 K) was determined and considered as the diagnostic feature for the high-spin d(4) manganese(III)-pyrrole alkoxide coordination. The strong upfield shift of the 3-H resonance has been accounted for by the donation of the electron density from the filled orbital of the 2-O atom on the half-occupied d(z)()()2 orbital of the external manganese(III) ion. The other pyrrole resonances produce the complex multiplet at the typical -5 to -40 ppm region. The (1)H NMR spectra of the series of monomeric 2-substituted manganese(III) 5,10,15,20-tetraphenylporphyrin complexes (2-X-TPP)Mn(III)Cl have been obtained and analyzed. The pattern of the assigned seven pyrrole resonances reflects the asymmetry imposed by 2-substitution and has been used as a (1)H NMR spectroscopic probe to map the spin density distribution. The electronic effect is strongly localized at the beta-substituted pyrrole. The upfield shift of the 3-H resonance increases in the order (2-NO(2)-TPP)Mn(III)Cl < (2-BzO-TPP)Mn(III)Cl < (2-OCH(3)-TPP)Mn(III)Cl < (2-OH-TPP)Mn(III)Cl < (2-NH(2)-TPP)Mn(III)Cl < [(2-O-TPP)Mn(III)(OH)](-) following the increasing electron-donating properties of the beta-substituent.  相似文献   

11.
The reactions between Mn(Por)Cl and Bu(4)N(+)CN(-) have been examined in various solvents by UV-vis and (1)H NMR spectroscopy, where Por's are dianions of meso-tetraisopropylporphyrin (T(i)PrP), meso-tetraphenylporphyrin (TPP), meso-tetrakis(p-(trifluoromethyl)phenyl)porphyrin (p-CF(3)-TPP), meso-tetramesitylporphyrin (TMP), and meso-tetrakis(2,6-dichlorophenyl)porphyrin (2,6-Cl(2)-TPP). Population ratios of the reaction products, Mn(Por)(CN) and [Mn(Por)(CN)(2)](-), have been sensitively affected by the solvents used. In the case of Mn(T(i)PrP)Cl, the following results are obtained: (i) The bis-adduct is preferentially formed in dipolar aprotic solvents such as DMSO, DMF, and acetonitrile. (ii) Both the mono- and bis-adduct are formed in the less polar solvents such as CH(2)Cl(2) and benzene though the complete conversion to the bis-adduct is achieved with much smaller amount of the ligand in benzene solution. (iii) Only the mono-adduct is formed in CHCl(3) solution even in the presence of a large excess of cyanide. (iv) Neither the mono- nor the bis-adduct is obtained in methanol solution. The results mentioned above have been explained in terms of the C-H.N and O-H.N hydrogen bonding in chloroform and methanol solutions, respectively, between the solvent molecules and cyanide ligand; hydrogen bonding weakens the coordination ability of cyanide and reduces the population of the bis-adduct. The importance of the C-H.N weak hydrogen bonding is most explicitly shown in the following fact: while the starting complex is completely converted to the bis-adduct in CH(2)Cl(2) solution, the conversion from the mono- to the bis-adduct is not observed even in the presence of 7000 equiv of Bu(4)N(+)CN(-) in CHCl(3) solution. The effective magnetic moments of the bis-adduct has been determined by the Evans method to be 3.2 micro(B) at 25 degrees C, suggesting that the complex adopts the usual (d(xy))(2)(d(xz), d(yz))(2) electron configuration despite the highly ruffled porphyrin core expected for [Mn(T(i)PrP)(CN)(2)](-). The spin densities of [Mn(T(i)PrP)(CN)(2)](-) centered on the pi MO have been determined on the basis of the (1)H and (13)C NMR chemical shifts. Estimated spin densities are as follows: meso-carbon, -0.0014; alpha-pyrrole carbon, -0.0011; beta-pyrrole carbon, +0.0066; pyrrole nitrogen, -0.022. The spin densities at the pyrrole carbon and meso nitrogen atoms are much smaller than those of the corresponding [Mn(TPP)(CN)(2)](-), which is ascribed to the nonplanar porphyrin ring of [Mn(T(i)PrP)(CN)(2)](-). This study has revealed that the C-H.N weak hydrogen bonding is playing an important role in determining the stability of the manganese(III) complexes.  相似文献   

12.
High-field and frequency electron paramagnetic resonance (HFEPR) of solid (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III), 1, shows that in the solid state it is well described as an S = 2 (high-spin) Mn(III) complex of a trianionic ligand, [Mn(III)C(3)(-)], just as Mn(III) porphyrins are described as [Mn(III)P(2)(-)](+). Comparison among the structural data and spin Hamiltonian parameters reported for 1, Mn(III) porphyrins, and a different Mn(III) corrole, [(tpfc)Mn(OPPh(3))], previously studied by HFEPR (Bendix, J.; Gray, H. B.; Golubkov, G.; Gross, Z. J. Chem. Soc., Chem. Commun. 2000, 1957-1958), shows that despite the molecular asymmetry of the corrole macrocycle, the electronic structure of the Mn(III) ion is roughly axial. However, in corroles, the S = 1 (intermediate-spin) state is much lower in energy than in porphyrins, regardless of axial ligand. HFEPR of 1 measured at 4.2 K in pyridine solution shows that the S = 2 [Mn(III)C(3)(-)] system is maintained, with slight changes in electronic parameters that are likely the consequence of axial pyridine ligand coordination. The present result is the first example of the detection by HFEPR of a Mn(III) complex in solution. Over a period of hours in pyridine solution at ambient temperature, however, the S = 2 Mn(III) spectrum gradually disappears leaving a signal with g = 2 and (55)Mn hyperfine splitting. Analysis of this signal, also observable by conventional EPR, leads to its assignment to a manganese species that could arise from decomposition of the original complex. The low-temperature S = 2 [Mn(III)C(3)(-)] state is in contrast to that at room temperature, which is described as a S = 1 system deriving from antiferromagnetic coupling between an S = (3/2) Mn(II) ion and a corrole-centered radical cation: [Mn(II)C(*)(2-)] (Licoccia, S.; Morgante, E.; Paolesse, R.; Polizio, F.; Senge, M. O.; Tondello, E.; Boschi, T. Inorg. Chem. 1997, 36, 1564-1570). This temperature-dependent valence state isomerization has been observed for other metallotetrapyrroles.  相似文献   

13.
The reaction between Mn(ClO 4) 2 and di-(2-pyridyl)-ketone in the presence of the sodium salt of propanediol as a base in MeOH leads to the formation of a hexanuclear manganese cluster. This cluster has been characterized by the formula [Mn(II) 3Mn(III) 3O(OH)(CH 3pdol) 3(Hpdol) 3(pdol)](ClO 4) 4 ( 1). Molecular conductance measurements of a 10 (-3) M solution of compound 1 in CH 3CN, DMSO, or DMF give Lambda m = 529, 135, or 245 muS/cm, respectively, which suggests a 1:4 cation/anion electrolyte. The crystal structure of hexanuclear manganese cluster 1 consists of two distinct trinuclear units with a pseudocubane-like arrangement. The trinuclear units show two different valence distributions, Mn(II)/Mn(III)/Mn(II) and Mn(III)/Mn(II)/Mn(III). Additional features of interest for the compound include the fact that (a) two of the Mn(III) ions show a Jahn-Teller elongation, whereas the third ion shows a Jahn-Teller compression; (b) one bridge between Mn(III) atoms is an oxo (O (2-)) ion, whereas the bridge between Mn(II) and Mn(III) is a hydroxyl (OH (-)) group; and (c) the di-(2-pyridyl)-ketone ligand that is methanolyzed to methyl-Hpdol and R 2pdol (R = CH 3, H) acts in three different modes: methyl-pdol(-1), Hpdol(-1), and pdol(-2). For magnetic behavior, the general Hamiltonian formalism considers that (a) all of the interactions inside the two "cubanes" between Mn(II) and Mn(III) ions are equal to the J 1 constant, those between Mn(II) ions are equal to the J 2 constant, and those between the Mn(III) ions are equal to the J 3 constant and (b) the interaction between the two cubanes is equal to the J 4 constant. The fitting results are J 1 = J 2 = 0.7 cm (-1), J 3 approximately 0.0, J 4 = -6.2 cm (-1), and g = 2.0 (fixed). According to these results, the ground state is S = 1/2, and the next excited states are S = 3/2 and 5/2 at 0.7 and 1.8 cm (-1), respectively. The EPR spectra prove that the spin ground state at a low temperature is not purely S = 1/2 but is populated with the S = 3/2 state, which is in accordance with the susceptibility and magnetization measurements.  相似文献   

14.
The NMR and EPR spectra for three complexes, iron(III) octamethyltetraphenylporphyrin bis(4-cyanopyridine) perchlorate, [FeOMTPP(4-CNPy)(2)]ClO(4), and its octaethyl- and tetra-beta,beta'-tetramethylenetetraphenylporphyrin analogues, [FeOETPP(4-CNPy)(2)]ClO(4) and [FeTC(6)TPP(4-CNPy)(2)]ClO(4), are presented. The crystal structures of two different forms of [FeOETPP(4-CNPy)(2)]ClO(4) and one form of [FeOMTPP(4-CNPy)(2)]ClO(4) are also reported. Attempts to crystallize [FeTC(6)TPP(4-CNPy)(2)]ClO(4) were not successful. The crystal structure of [FeOMTPP(4-CNPy)(2)]ClO(4) reveals a saddled porphyrin core, a small dihedral angle between the axial ligand planes, 64.3 degrees, and an unusually large tilt angle (24.4 degrees ) of one of the axial 4-cyanopyridine ligands with respect to the normal to the porphyrin mean plane. There are 4 and 2 independent molecules in the asymmetric units of [FeOETPP(4-CNPy)(2)]ClO(4) crystallized from CD(2)Cl(2)/dodecane (1-4) and CDCl(3)/cyclohexane (5-6), respectively. The geometries of the porphyrin cores in 1-6 vary from purely saddled to saddled with 15% ruffling admixture. In all structures, the Fe-N(p) distances (1.958-1.976 A) are very short due to strong nonplanar distortion of the porphyrin cores, while the Fe-N(ax) distances are relatively long ( approximately 2.2 A) compared to the same distances in S = (1)/(2) bis(pyridine)iron(III) porphyrin complexes. An axial EPR signal is observed (g( perpendicular ) = 2.49, g( parallel ) = 1.6) in frozen solutions of both [FeOMTPP(4-CNPy)(2)]ClO(4) and [FeTC(6)TPP(4-CNPy)(2)]ClO(4) at 4.2 K, indicative of the low spin (LS, S = (1)/(2)), (d(yz)d(xz))(4)(d(xy))(1) electronic ground state for these two complexes. In agreement with a recent publication (Ikeue, T.; Ohgo, Y.; Ongayi, O.; Vicente, M. G. H.; Nakamura, M. Inorg. Chem. 2003, 42, 5560-5571), the EPR spectra of [FeOETPP(4-CNPy)(2)]ClO(4) are typical of the S = (3)/(2) state, with g values of 5.21, 4.25, and 2.07. A small amount of LS species with g = 3.03 is also present. However, distinct from previous conclusions, large negative phenyl-H shift differences delta(m) - delta(o) and delta(m) - delta(p) in the (1)H NMR spectra indicate significant negative spin density at the meso-carbons, and the larger than expected positive average CH(2) shifts are also consistent with a significant population of the S = 2 Fe(II), S = (1)/(2) porphyrin pi-cation radical state, with antiferromagnetic coupling between the metal and porphyrin unpaired electrons. This is the first example of this type of porphyrin-to-metal electron transfer to produce a partial or complete porphyrinate radical state, with antiferromagnetic coupling between metal and macrocycle unpaired electrons in an iron porphyrinate. The kinetics of ring inversion were studied for the [FeOETPP(4-CNPy)(2)]ClO(4) complex using NOESY/EXSY techniques and for the [FeTC(6)TPP(4-CNPy)(2)]ClO(4) complex using DNMR techniques. For the former, the free energy of activation, deltaG, and rate of ring inversion in CD(2)Cl(2) extrapolated to 298 K are 63(2) kJ mol(-)(1) and 59 s(-)(1), respectively, while for the latter the rate of ring inversion at 298 K is at least 4.4 x 10(7) s(-)(1), which attests to the much greater flexibility of the TC(6)TPP ring. The NMR and EPR data are consistent with solution magnetic susceptibility measurements that show S = (3)/(2) in the temperature range from 320 to 180 K for [FeOETPP(4-CNPy)(2)](+), while both [FeOMTPP(4-CNPy)(2)](+) and [FeTC(6)TPP(4-CNPy)(2)](+) change their spin state from S = (3)/(2) at room temperature to mainly LS (S = (1)/(2)) upon cooling to 180 K.  相似文献   

15.
Fast catalytic hydroxylation of hydrocarbons with ruthenium porphyrins   总被引:1,自引:0,他引:1  
Ruthenium porphyrin complexes such as carbonylruthenium(II) tetrakispentafluorophenylporphyrin [Ru(II)(TPFPP)(CO)] were found to be efficient catalysts for the hydroxylation of alkanes in the presence of 2,6-dichloropyridine N-oxide as the oxidant under mild, nonacidic conditions. Up to 14 800 turnovers (TO) and rates of 800 TO/min were obtained for the hydroxylation of adamantane. The hydroxylation of cis-decalin afforded cis-9-decalol and cis-decalin-9,10-diol, exclusively, thus, excluding a long-lived radicals mechanism. The kinetics of product evolution in a typical catalytic oxygenation showed an initial induction period followed by a fast, apparently zero-order phase with maximum rates and high efficiencies. Deuterium isotope effects (kH/kD) in the range of 4.2-6.4 were found for the hydroxylation of alkanes. A Hammett treatment of the data for the oxidation of para-substituted toluene derivatives showed a linear correlation with a highly negative rho+ value of -2.0. On the basis of kinetic and spectroscopic evidence, Ru(VI)(TPFPP)(O)2, Ru(II)(TPFPP)(CO), and Ru(IV)(TPFPP)Cl2 observed during catalysis were ruled out as candidates for the active catalyst responsible for the high efficiencies and turnover rates in the oxidation reactions. The fastest rates of adamantane hydroxylation with 2,6-dichloropyridine N-oxide were achieved by the reductive activation of Ru(IV)(TPFPP)Cl2 with a zinc amalgam. This redox activation is consistent with the formation of an active Ru(III) intermediate in situ by a one-electron reduction of the Ru(IV) porphyrin. EPR spectra characteristic of Ru(III) have been observed upon the reduction of Ru(IV)(TPFPP)Cl2 with a zinc amalgam. In the adamantane oxidation mediated with Ru(III)(TPFPP)(OEt), it was found that, during this process, the Ru(III) porphyrin was gradually converted to a dioxoRu(VI) porphyrin. Concomitant with this conversion, the reaction rates decreased. Catalyst activation was also stimulated by autoxidation of the solvent CH2Cl2. On the basis of these data, a mechanism is proposed that incorporates a "fast" cycle involving metastable Ru(III) and oxoRu(V) intermediates and a "slow" oxidation cycle, mediated by oxoRu(IV) and trans-dioxoRu(VI) porphyrin complexes.  相似文献   

16.
The oxidation of aryl sulfides by tetra-n-butylammonium peroxomonosulfate (n-Bu4NHSO5) was carried out in the presence of six different manganese (III) tetraarylporphyrins [Mn(Por)s] as biomimetic catalysts and a number of nitrogen donors as co-catalysts. There is no noticeable difference between the reactivity of sulfides, in the presence of electron-rich Mn(por)s, whereas, for electron-deficient catalysts, conversion rates are different. Nevertheless, the over-oxidation of sulfoxide is more sensitive to both the nature of substituents attached to the sulfur atom in substrates as well as porphyrin complex structure. The degree of catalytic activity of Mn(Por)s for the formation of sulfone product increases as the following order: Mn(TPFPP)OAc < Mn[T(4-NO2P)P]OAc < Mn(TDCPP)OAc < Mn(TPP)OAc < Mn(TMP)OAc < Mn[T(4-OMeP)P]OAc. Our results show that in the presence of electron-rich Mn(Por)s, the strong π-donor N-H imidazoles possess co-catalytic activity greater than that of strong σ-donor amines and weak π-donor pyridines. When electron-deficient Mn(Por)s were employed as catalyst, pyridines demonstrated a higher co-catalytic activity than that of N-H imidazoles. The pronounced effect of protic solvents on the rate and selectivity of oxidation reactions, particularly in the presence of electron-deficient Mn(Por)s has been observed. The outcome of our investigations accompanied by UV-Vis and Raman spectral data confirms the involvement of different active oxidant such as a high valent Mn-oxo species as well as a six-coordinate [(L)(Por)Mn-OHSO4] complex.  相似文献   

17.
The dynamics of porphyrin ring inversion of a number of Fe(III) complexes of octamethyltetraphenylporphyrin, (OMTPP)Fe(III); octaethyltetraphenylporphyrin, (OETPP)Fe(III); octaethyltetra(perfluorophenyl)porphyrin, (F(20)OETPP)Fe(III); and tetra-beta,beta'-tetramethylenetetraphenyl-porphyrin, (TC(6)TPP)Fe(III), having either one (Cl(-), ClO(4-)) or two [4-(dimethylamino)pyridine, 4-Me(2)NPy; 1-methylimidazole, 1-MeIm; tert-butylisocyanide, t-BuNC; or cyanide, CN(-)] axial ligands have been characterized by 1D dynamic NMR (DNMR) and 2D (1)H NOESY/EXSY spectroscopies as a function of temperature. The activation parameters, Delta H++, Delta S++, and Delta G++(298), and the extrapolated rate constants at 298 K for three chloride, one perchlorate, and three bis-(4-Me(2)NPy) complexes as well as [FeOETPP(1-MeIm)(2)]Cl, [FeOETPP(t-BuNC)(2)]ClO(4), and Na[FeOETPP(CN)(2)] have been determined. The results indicate that there is a wide range of flexibility for the porphyrin core (k(ex)(298) = 10-10(7) s(-1)) that decreases in the order TC(6)TPP > OMTPP > F(20)OETPP > or = OETPP, which correlates with increasing porphyrin nonplanarity. To determine the effect of axial ligands, we calculated the free energy of activation, Delta G++(298) for OETPPFe(III) bis-ligated with 4-Me(2)NPy, 1-MeIm, or 4-CNPy (approximately 59 kJ mol(-1)), and for complexes with small cylindrical ligands (t-BuNC and CN(-)) (approximately 37 kJ mol(-1)). These data suggest that the Delta G++(298) for planar ligand rotation is roughly 20-25 kJ mol(-1).  相似文献   

18.
Binuclear manganese complexes Mn2(III/IV)(dtsalpn)2DCBI, 1, Mn2(III/III)(dtsalpn)2HDCBI, 2, containing the ligand dicarboxyimidazole (DCBI) have been prepared in order to address the issue of imidazole bridged and ferromagnetically coupled Mn sites in high oxidation states of the OEC in Photosystem II (PS II). Temperature dependent magnetic susceptibility studies of 1 indicates that the interaction between the two Mn(III)/Mn(IV) ions is ferromagnetic (J = +1.4 cm(-1)). Variable temperature EPR spectra of 1 shows that a g = 2 multiline is as an excited state signal corresponding to S = 1/2.  相似文献   

19.
Cobalt(II) complexes of poly(aryl ester) dendrimer porphyrins [(m-[Gn]TPP)Co(II)] (generation number n=0-4), in the presence of azobisisobutyronitrile (AIBN) at 60 degrees C, underwent alkenylation with several alkynes at the metal center. A complete inhibition of double-bond migration (secondary transformation) was observed for [(m-[Gn]TPP)Co(II)] (n=3 and 4), which gave [(m-[Gn]TPP)Co(III)-C(=CH(2))R] (n=3 and 4) exclusively. Overall reaction rates for [(m-[Gn]TPP)Co(II)] (n=0-3) were hardly dependent on the size of the dendritic substituents, while a notable retardation was observed for the largest dendrimer, [(m-[G4]TPP)Co(II)]. Mechanistic studies on double-bond migration with pure [(m-[Gn]TPP)Co(III)-C(=CH(2))Bu] (n=0-4) demonstrated that the secondary transformation involves participation of [(m-[Gn]TPP)Co(III)H] (n=0-4), derived from [(m-[Gn]TPP)Co(II)] and AIBN, rather than [(m-[Gn]TPP)Co(II)] alone. Crossover experiments using [(m-[Gn]TPP)Co(III)-C(=CH(2))Bu] (n=2-4), in combination with nondendritic [(m-[G0]TPP)Co(II)] and AIBN, indicated a high level of steric protection of the active center by a robust [G4]-dendritic cage, as suggested by a (1)H NMR pulse relaxation time profile of m-[G4]TPPH(2).  相似文献   

20.
Green oxidation of 2-substituted imidazolines with tert-butyl hydroperoxide catalyzed by tetraphenylporphyrinatomanganese(III) chloride, [Mn(TPP)Cl], supported on polystyrene and silica bound imidazole is reported. A variety of 2-imidazolines were efficiently converted to their corresponding imidazoles by these catalytic systems in H2O. Ultrasonic (US) irradiation enhanced the catalytic activity of these catalysts and higher product yields were observed at shorter reaction times. These catalysts were re-used several times without significant loss of their catalytic activities. The effect of reaction parameters such as catalyst amount, reaction temperature, and the effect of US irradiation on the catalytic activity was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号