首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7277篇
  免费   202篇
  国内免费   24篇
化学   5436篇
晶体学   39篇
力学   70篇
数学   1100篇
物理学   858篇
  2020年   77篇
  2019年   73篇
  2016年   147篇
  2015年   146篇
  2014年   115篇
  2013年   261篇
  2012年   249篇
  2011年   325篇
  2010年   183篇
  2009年   193篇
  2008年   297篇
  2007年   302篇
  2006年   276篇
  2005年   306篇
  2004年   281篇
  2003年   212篇
  2002年   136篇
  2000年   55篇
  1999年   60篇
  1997年   118篇
  1996年   98篇
  1995年   115篇
  1994年   97篇
  1993年   107篇
  1992年   99篇
  1991年   101篇
  1990年   80篇
  1989年   107篇
  1988年   115篇
  1987年   104篇
  1986年   112篇
  1985年   138篇
  1984年   110篇
  1983年   102篇
  1982年   110篇
  1981年   99篇
  1980年   111篇
  1979年   97篇
  1978年   99篇
  1977年   90篇
  1976年   85篇
  1975年   69篇
  1974年   94篇
  1973年   89篇
  1972年   56篇
  1971年   74篇
  1961年   141篇
  1960年   195篇
  1959年   102篇
  1958年   115篇
排序方式: 共有7503条查询结果,搜索用时 46 毫秒
1.
Functionalization of the PNP pincer ligand backbone allows for a comparison of the dialkyl amido, vinyl alkyl amido, and divinyl amido ruthenium(II) pincer complex series [RuCl{N(CH2CH2PtBu2)2}], [RuCl{N(CHCHPtBu2)(CH2CH2PtBu2)}], and [RuCl{N(CHCHPtBu2)2}], in which the ruthenium(II) ions are in the extremely rare square‐planar coordination geometry. Whereas the dialkylamido complex adopts an electronic singlet (S=0) ground state and energetically low‐lying triplet (S=1) state, the vinyl alkyl amido and the divinyl amido complexes exhibit unusual triplet (S=1) ground states as confirmed by experimental and computational examination. However, essentially non‐magnetic ground states arise for the two intermediate‐spin complexes owing to unusually large zero‐field splitting (D>+200 cm?1). The change in ground state electronic configuration is attributed to tailored pincer ligand‐to‐metal π‐donation within the PNP ligand series.  相似文献   
2.
3.
Octahedral iridium(III) complexes containing two bidentate cyclometalating 5‐tert‐butyl‐2‐phenylbenzoxazole ( IrO ) or 5‐tert‐butyl‐2‐phenylbenzothiazole ( IrS ) ligands in addition to two labile acetonitrile ligands are demonstrated to constitute a highly versatile class of asymmetric Lewis acid catalysts. These complexes feature the metal center as the exclusive source of chirality and serve as effective asymmetric catalysts (0.5–5.0 mol % catalyst loading) for a variety of reactions with α,β‐unsaturated carbonyl compounds, namely Friedel–Crafts alkylations (94–99 % ee), Michael additions with CH‐acidic compounds (81–97 % ee), and a variety of cycloadditions (92–99 % ee with high d.r.). Mechanistic investigations and crystal structures of an iridium‐coordinated substrates and iridium‐coordinated products are consistent with a mechanistic picture in which the α,β‐unsaturated carbonyl compounds are activated by two‐point binding (bidentate coordination) to the chiral Lewis acid.  相似文献   
4.
A bis‐cyclometalated rhodium(III) complex catalyzes a visible‐light‐activated enantioselective α‐amination of 2‐acyl imidazoles with up to 99 % yield and 98 % ee. The rhodium catalyst is ascribed a dual function as a chiral Lewis acid and, simultaneously, as a light‐activated smart initiator of a radical‐chain process through intermediate aminyl radicals. Notably, related iridium‐based photoredox catalysts reported before were unsuccessful in this enantioselective radical C?N bond formation. The surprising preference for rhodium over iridium is attributed to much faster ligand‐exchange kinetics of the rhodium complexes involved in the catalytic cycle, which is crucial to keep pace with the highly reactive and thus short‐lived nitrogen‐centered radical intermediate.  相似文献   
5.
6.
As DNA exhibits persistent structures with dimensions that exceed the range of their intermolecular forces, solid‐state DNA undergoes thermal degradation at elevated temperatures. Therefore, the realization of solvent‐free DNA fluids, including liquid crystals and liquids, still remains a significant challenge. To address this intriguing issue, we demonstrate that combining DNA with suitable cationic surfactants, followed by dehydration, can be a simple generic scheme for producing these solvent‐free DNA fluid systems. In the anhydrous smectic liquid crystalline phase, DNA sublayers are intercalated between aliphatic hydrocarbon sublayers. The lengths of the DNA and surfactant are found to be extremely important in tuning the physical properties of the fluids. Stable liquid‐crystalline and liquid phases are obtained in the ?20 °C to 200 °C temperature range without thermal degradation of the DNA. Thus, a new type of DNA‐based soft biomaterial has been achieved, which will promote the study and application of DNA in a much broader context.  相似文献   
7.
8.
9.
Mathematische Semesterberichte -  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号