首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The iridium dihydride [Ir(H)2(HPNP)]+ (PNP=N(CH2CH2PtBu2)2) reacts with O2 to give the unusual, square‐planar iridium(III) hydroxide [Ir(OH)(PNP)]+ and water. Regeneration of the dihydride with H2 closes a quasi‐catalytic synthetic oxygen‐reduction reaction (ORR) cycle that can be run several times. Experimental and computational examinations are in agreement with an oxygenation mechanism via rate‐limiting O2 coordination followed by H‐transfer at a single metal site, facilitated by the cooperating pincer ligand. Hence, the four electrons required for the ORR are stored within the two covalent M? H bonds of a mononuclear metal complex.  相似文献   

2.
The isolable complex [Os(PHMes*)H(PNP)] (Mes*=2,4,6‐tBu3C6H3; PNP=N{CHCHPtBu2}2) exhibits high phosphinyl radical character. This compound offers access to the phosphinidene complex [Os(PMes*)H(PNP)] by P?H proton coupled electron transfer (PCET). The P?H bond dissociation energy (BDE) was determined by isothermal titration calorimetry and supporting DFT computations. The phosphinidene product exhibits electrophilic reactivity as demonstrated by intramolecular C?H activation.  相似文献   

3.
Achiral P‐donor pincer‐aryl ruthenium complexes ([RuCl(PCP)(PPh3)]) 4c , d were synthesized via transcyclometalation reactions by mixing equivalent amounts of [1,3‐phenylenebis(methylene)]bis[diisopropylphosphine] ( 2c ) or [1,3‐phenylenebis(methylene)]bis[diphenylphosphine] ( 2d ) and the N‐donor pincer‐aryl complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 2). The same synthetic procedure was successfully applied for the preparation of novel chiral P‐donor pincer‐aryl ruthenium complexes [RuCl(P*CP*)(PPh3)] 4a , b by reacting P‐stereogenic pincer‐arenes (S,S)‐[1,3‐phenylenebis(methylene)]bis[(alkyl)(phenyl)phosphines] 2a , b (alkyl=iPr or tBu, P*CHP*) and the complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 3). The crystal structures of achiral [RuCl(equation/tex2gif-sup-3.gifPCP)(PPh3)] 4c and of chiral (S,S)‐[RuCl(equation/tex2gif-sup-6.gifPCP)(PPh3)] 4a were determined by X‐ray diffraction (Fig. 3). Achiral [RuCl(PCP)(PPh3)] complexes and chiral [RuCl(P*CP*)(PPh3)] complexes were tested as catalyst in the H‐transfer reduction of acetophenone with propan‐2‐ol. With the chiral complexes, a modest enantioselectivity was obtained.  相似文献   

4.
The reaction of HON(tBu)CH2CH2N(tBu)OH with tri‐tert‐butyl gallium affords a hydroxylaminato complex of the formula [tBu2Ga{ON(tBu)CH2CH2N(H)(tBu)O}], which contains a monoanionic bishydroxylaminato ligand with one anionic and one neutral, but tautomeric aminoxide end, both linked to gallium by their oxygen atoms leading to a seven‐membered ring. The compound was characterised by elemental analysis, 1H and 13C NMR and determination of its crystal structure.  相似文献   

5.
The first ruthenocene- and pentamethylruthenocene-based ruthenium pincer complexes, RuCl(CO)[{2,5-(But 2PCH2)2C5H2}Ru(C5H5)] and RuCl(CO)[{2,5-(But 2PCH2)2C5H2}Ru-(C5Me5)], were synthesized by cyclometallation of {1,3-(But 2PCH2)2C5H2}Ru(C5H5) and {1,3-(But 2PCH2)2C5H2}Ru(C5Me5), respectively, with RuCl2(DMSO)4 in 2-methoxyethanol and characterized by 1H and 31P{1H} NMR spectroscopy, and X-ray diffraction.  相似文献   

6.
The preparation and isolation of the first palladium dihydrogen complex is described. NMR spectroscopy reveals a very short H? H bond length, but the hydrogen molecule is activated toward heterolytic cleavage. An X‐ray crystal structure suggests that proton transfer to the tBuPCP (κ3‐2,6‐(tBu2PCH2)2C6H3) pincer ligand is possible. The basicity of the ipso‐carbon atom of the pincer ligand was investigated in a related complex.  相似文献   

7.
Neutral, mono‐, and dicationic phosphorus(III) compounds are accessible with a supporting PNP pincer ligand (PNP=[4‐Me‐2‐iPr2P‐C6H3)2N]). Reaction of (PNP)H with PCl3 and nBu3N furnished (PNP)PCl2 ( 1 ), which displays a highly temperature‐dependent structure in solution. Synthesis and characterization by NMR spectroscopy and X‐ray crystallography of Cl/Br‐scrambled derivatives, a monocationic derivative [(PNP)PCl][HCB11H11] ( 4 ), and the dicationic derivatives [(PNP)P][OTf]2 ( 5 ), [(PNP)P][B(C6F5)4]2 ( 6 ), [(PNP)P][B12Cl12] ( 7 ) established that 1 not only undergoes several fluxional processes in solution but also possesses a temperature‐dependent ground state structure. Reaction of 1 with a Ni0 source initially leads to a phosphine–phosphinidene complex, followed by thermal generation of P4.  相似文献   

8.
The first (trifluoromethyl)tetramethylruthenocene-based ruthenium pincer complex RuCl(CO)[{2,5-(Bu 2 t PCH2)2C5H2}Ru(C5Me4CF3)] was synthesized by cyclometallation of the bisphosphine ligand {1,3-(Bu 2 t PCH2)2C5H2}Ru(C5Me4CF3) with RuCl2(DMSO)4 in 2-methoxyethanol in the presence of NEt3. The new complex was fully characterized by 1H, 19F, 31P{1H}, 13C{1H} NMR and IR spectroscopy.  相似文献   

9.
10.
Four NHC [CNN] pincer nickel (II) complexes, [iPrCNN (CH2)4‐Ni‐Br] ( 5a ), [nBuCNN (CH2)4‐Ni‐Br] ( 5b ), [iPrCNN (Me)2‐Ni‐Br] ( 6a ) and [nBuCNN (Me)2‐Ni‐Br] ( 6b ), bearing unsymmetrical [C (carbene)N (amino)N (amine)] ligands were synthesized by the reactions of [CNN] pincer ligand precursors 4 with Ni (DME)Cl2 in the presence of Et3N. Complexes 5a and 5b are new and were completely characterized. The transfer hydrogenation of ketones catalyzed by the four pincer nickel complexes were explored. Complexes 5a and 6a have better catalytic activity than 5b and 6b . With a combination of NaOtBu/iPrOH/80 °C and 2% catalyst loading of 5a , 77–98% yields of aromatic alcohols could be obtained.  相似文献   

11.
Square planar palladium(II) aryl-amido complexes of diphosphinoazines in monoanionic unsymmetrical PNP’ pincer-type coordination were prepared by reactions of phenyl-, o-tolyl-, or 2,6-dimethylphenyllithium with previously described chloro-amido complexes of diphosphinoazines having isopropyl, cyclohexyl and tert-butyl substituents on phosphorus atoms. The compounds were characterized by NMR showing free rotation around metal-aryl bond in the complexes; the presence of Cipso-Pd bond was detected by two-dimensional experiments. In addition to that, crystal and molecular structure of one phenyl-amido complex, [Pd(C6H5){P(C6H11)2CHC(But)NNC(But)CH2P(C6H11)2}], was determined by X-ray diffraction together with the structure of a chloro-amido complex [PdCl{PBut2CHC(But)NNC(But)CH2PBut2}]. In both structures the ligand trans to the amide nitrogen is well surrounded by substituents on phosphorus atoms, the former complex showing significant interactions between two cyclohexyl hydrogen atoms and the π-system of the phenyl ring. The values od Pd-C and Pd-N bond distances in this complex are the same as those in a monodentate analog [Pd(PMe3)2(C6H5)(NHC6H5)] which contrasts with the different values in a similar PNP symmetrical pincer complex reported in the literature.  相似文献   

12.
The ability of substituted carbazol‐9‐yl systems to ligate in σ fashion through the amido N‐donor, or to adopt alternative coordination modes through the π system of the central five‐membered ring, can be tuned by systematic variation in the steric demands of substituents in the 1‐ and 8‐positions. The differing affinities of the two modes of coordination for hard and soft metal centres can be shown to influence not only cation selectivity, but also the redox properties of the metal centre. Thus, the highly sterically sterically demanding 1,3,6,8‐tetra‐tert‐butylcarbazolyl ligand can be used to generate the structurally characterised amido‐indium(I) complex, [{(tBu4carb)In}n], (together with its isostructural thallium counterpart) in which the metal centre interacts with the central pyrrolyl ring in η3 fashion [d(In? N)=2.679(3) Å; d(In? C)=2.819(3), 2.899(3) Å]. By contrast, the smaller 3,6‐di‐tert‐butylcarbazolyl system is less able to restrict the metal centre from binding at the anionic nitrogen donor in the plane of the carbazolyl ligand (i.e. in σ fashion). Analogous chemistry with InI precursors therefore leads to disproportionation to the much harder InII [and In0], and the formation of the mixed‐valence product, [In2{In2(tBu2carb)6}], a homoleptic molecular [In4(NR2)6] system. This chemistry reveals a flexibility of ligation for carbazolyl systems that contrasts markedly with that of the similarly sterically encumbered terphenyl ligand family.  相似文献   

13.
In strong alkaline media, the reaction of 2-(tert-butylamino)ethanol (3: R?=?But) with CS2 at 0°C produced a cyclic dithiocarbamate, 3-tert-butylthiazolidine-2-thione (1: R?=?But), rather than alkaline metal or ammonium salts of [S2CN(But)CH2CH2OH]?. This is in contrast to isolation of stable alkaline metal or ammonium salts of [S2CN(R)CH2CH2OH]? (R?=?Me, Et, Pr, or CH2CH2OH) obtained in analogous reactions. The use of Ni(OAc)2, both as a source of Ni(II) and a weaker base, in a one-pot reaction with (3: R?=?But) and CS2, successfully gave the first reported metal complex of [S2CN(But)CH2CH2OH]?, namely [Ni{S2CN(But)CH2CH2OH}2] (2: R?=?But). Compounds 1 and 2 have been fully characterized by infrared and NMR spectroscopies, and by X-ray crystallography. DFT calculations on the cyclization and stabilities of [S2CN(R)CH2CH2OH]? (R?=?Pr and But) have been carried out.  相似文献   

14.
A sterically encumbering multidentate β‐diketiminato ligand, tBuL2 (tBuL2=[ArNC(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]?, Ar=2,6‐iPr2C6H3), is reported in this study along with its coordination chemistry to zirconium(IV). Using the lithio salt of this ligand, Li(tBuL2) ( 4 ), the zirconium(IV) precursor (tBuL2)ZrCl3 ( 6 ) could be readily prepared in 85 % yield and structurally characterized. Reduction of 6 with 2 equiv of KC8 resulted in formation of the terminal and mononuclear zirconium imide‐chloride [C(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]Zr(=NAr)(Cl) ( 7 ) as the result of reductive C=N cleavage of the imino fragment in the multidentate ligand tBuL2 by an elusive ZrII species (tBuL2)ZrCl ( A ). The azabutadienyl ligand in 7 can be further reduced by 2 e? with KC8 to afford the anionic imide [K(THF)2]{[CH(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2N(Me)CH2]Zr=NAr} ( 8‐2THF ) in 42 % isolated yield. Complex 8‐2THF results from the oxidative addition of an amine C?H bond followed by migration to the vinylic group of the formal [C(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]? ligand in 7 . All halides in 6 can be replaced with azides to afford (tBuL2)Zr(N3)3 ( 9 ) which was structurally characterized, and reduction with two equiv of KC8 also results in C=N bond cleavage of tBuL2 to form [C(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]Zr(=NAr)(N3) ( 10 ), instead of the expected azide disproportionation to N3? and N2. Solid‐state single crystal structural studies confirm the formation of mononuclear and terminal zirconium imido groups in 7 , 8‐Et2O , and 10 with Zr=NAr distances being 1.8776(10), 1.9505(15), and 1.881(3) Å, respectively.  相似文献   

15.
The title compound, [PdBr(C14H21S2)] or [PdBr{C6H3(CH2SiPr)2‐2,6}], exhibits square‐planar geometry at the Pd centre, with three atoms of the square plane provided by the rigid thio­pincer ligand, i.e. 1,3‐bis­(thio­methyl)­benzene.  相似文献   

16.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

17.
An efficient synthesis of 2-di-tert-butylphosphanylmethylpyrrole (HpyrmPtBu2), by treating 2-dimethylaminomethylpyrrole (HpyrmNMe2) with tBu2PH at 135 °C in the absence of any solvent, has allowed the preparation of the new PGeP germylene Ge(pyrmPtBu2)2 ( 1 ), by treating [GeCl2(dioxane)] with LipyrmPtBu2, in which the Ge atom is stabilized by intramolecular interactions with one (solid state) or both (solution) of its phosphane groups. Reactions of germylene 1 with Group 10 metal dichlorido complexes containing easily displaceable ligands have led to [MCl{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] [M=Ni ( 2 ), Pd ( 3 ), Pt ( 4 )], which have an unflawed square-planar metal environment. Treatment of germylene 1 with [AuCl(tht)] (tht=tetrahydrothiophene) rendered [Au{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] ( 5 ), which is a rare case of a T-shaped gold(I) complex. The hydrolysis of 5 gave the linear gold(I) derivative [Au(κP-HpyrmPtBu2)2]Cl ( 6 ). Complexes 2 – 5 contain a PGeP pincer chloridogermyl ligand that arises from the insertion of the Ge atom of germylene 1 into a M−Cl bond of the corresponding metal reagent. The bonding in these molecules has been studied by DFT/NBO/QTAIM calculations. These results demonstrate that the great flexibility of germylene 1 makes it a better precursor to PGeP pincer complexes than the previously known germylenes of this type.  相似文献   

18.
A series of Ru complexes containing lutidine‐derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver‐carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N‐heterocyclic carbene fragments. In the presence of tBuOK, the Ru‐CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand‐assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru‐CNC complex 5 e (BF4) is able to add aldimines to the metal–ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer‐sphere stepwise hydrogen transfer to the C?N bond assisted either by the pincer ligand or a second coordinated H2 molecule.  相似文献   

19.
Alcohols are oxidized by N‐methylmorpholine‐N‐oxide (NMO), ButOOH and H2O2 to the corresponding aldehydes or ketones in the presence of catalyst, [RuH(CO)(PPh3)2(SRaaiNR′)]PF6 ( 2 ) and [RuCl(CO)(PPh3)(SκRaaiNR′)]PF6 ( 3 ) (SRaaiNR′ ( 1 ) = 1‐alkyl‐2‐{(o‐thioalkyl)phenylazo}imidazole, a bidentate N(imidazolyl) (N), N(azo) (N′) chelator and SκRaaiNR′ is a tridentate N(imidazolyl) (N), N(azo) (N′), Sκ‐R is tridentate chelator; R and R′ are Me and Et). The single‐crystal X‐ray structures of [RuH(CO)(PPh3)2(SMeaaiNMe)]PF6 ( 2a ) (SMeaaiNMe = 1‐methyl‐2‐{(o‐thioethyl)phenylazo}imidazole) and [RuH(CO)(PPh3)2(SEtaaiNEt)]PF6 ( 2b ) (SEtaaiNEt = 1‐ethyl‐2‐{(o‐thioethyl)phenylazo}imidazole) show bidentate N,N′ chelation, while in [RuCl(CO)(PPh3)(SκEtaaiNEt)]PF6 ( 3b ) the ligand SκEtaaiNEt serves as tridentate N,N′,S chelator. The cyclic voltammogram shows RuIII/RuII (~1.1 V) and RuIV/RuIII (~1.7 V) couples of the complexes 2 while RuIII/RuII (1.26 V) couple is observed only in 3 along with azo reductions in the potential window +2.0 to ?2.0 V. DFT computation has been used to explain the spectra and redox properties of the complexes. In the oxidation reaction NMO acts as best oxidant and [RuCl(CO)(PPh3)(SκRaaiNR′)](PF6) ( 3 ) is the best catalyst. The formation of high‐valent RuIV=O species as a catalytic intermediate is proposed for the oxidation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The silyl amide Et2SiCl‐NLi‐SitBu3 can be cleanly prepared from precursor silylamine Et2SiCl‐NH‐SitBu3 and Li[nBu]. The CF3SO3SiMe3 induced LiCl elimination of Et2SiCl‐NLi‐SitBu3 in thf afforded a 2‐silaazetidine derivative by [2+2] cycloaddition of Et2Si=N–SitBu3 with Et2Si(OCH=CH2)–NH–SitBu3. X‐ray quality crystals of this 2‐silaazetidine derivative (triclinic, space group P$\bar{1}$ ) were grown from benzene at room temperature. The starting material for this approach, Et2SiCl–NH–SitBu3, is water‐sensitive. Hydrolysis of Et2SiCl‐NH‐SitBu3 gave [tBu3SiNH3]Cl along with (Et2SiO)n oligomers. The hydro chloride [tBu3SiNH3]Cl could be isolated and was characterized by X‐ray crystallography (trigonal, space group P$\bar{3}$ ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号