首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   0篇
化学   58篇
物理学   24篇
  2021年   1篇
  2020年   5篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2012年   2篇
  2011年   7篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
1.
Journal of Solid State Electrochemistry - In order to appraise microstructure-determined defect formation processes and minor intergranular states in the solid electrolyte materials sintered...  相似文献   
2.

Transport properties of perovskite-type Sr11Mo4O23 and composite Sr11Mo4O23 - 1 wt% Al2O3 were studied at 400–1300 K in the oxygen partial pressure range from 0.21 down to 10−19 atm. The electromotive force and faradaic efficiency measurements, in combination with the energy-dispersive spectroscopy of the fractured electrochemical cells, unambiguously showed prevailing role of the oxygen ionic conductivity under oxidizing conditions. At temperatures above 600 K, protonic and cationic transport can be neglected. The oxygen ion transference numbers vary in the range of 0.95–1.00 at 973–1223 K. At temperatures lower than 550 K, the total conductivity of Sr11Mo4O23 - 1 wt% Al2O3 composite measured by impedance spectroscopy tends to increase in wet atmospheres, thus indicating that hydration and protonic transport become significant. Reducing oxygen partial pressure below 10−10–10−9 atm leads to a significant increase in the n-type electronic conduction. The average thermal expansion coefficients in oxidizing atmospheres are (14.3–15.0) × 10−6 K−1 at 340–740 K and (18.3–19.2) × 10−6 K−1 at 870–1370 K.

  相似文献   
3.
Russian Journal of Electrochemistry - The work is focused on the studying of structural peculiarities, electronic and ionic conductivity, and thermomechanical properties of perovskite-like...  相似文献   
4.
A gas turbine power plant for CO2 capture, based on oxygen-permeable membranes with mixed ionic-electronic conductivity, was analysed with respect to long-term stability by means of numerical simulation. Due to the attractive transport and physicochemical properties of mixed-conducting La2NiO4+δ, this nickelate was selected as a prototype membrane material for this application. Experiments showed very slow degradation of La2NiO4+δ membranes at oxygen chemical potentials close to atmospheric conditions, which are associated with kinetic demixing and other microstructure-related factors. Interaction with CO2 in the intermediate temperature range also leads to lower oxygen permeation, whilst increasing oxygen pressure may cause partial phase decomposition and microstructural changes, thus again limiting the range of possible operation conditions. The relevant operational constraints were included in a detailed membrane-based gas turbine power plant model. The membrane performance degradation with time was approximated by a linear function with average rate of 3.3% per 1,000 operation hours. Furthermore, performance deterioration of the gas turbine compressor and turbine were also considered. Simulations revealed that the power plant is substantially affected by degradation of the ceramic membranes and turbomachinery components. The already rather small operating window was further narrowed when compared with a conventional gas turbine power plant. Two different designs of the membrane-based power plant were analysed: (1) with and (2) without additional combustors (afterburners) between the membrane reactor and the gas turbine. Afterburners increase thermal efficiency as well as power output, but also lead to non-negligible CO2 emissions. In order to have a frame of comparison, results for a conventional gas turbine power plant with degradation of turbomachinery components are also presented. Simulations representing changes in ambient temperature and fuel composition as well as failure incidents were executed to analyse the susceptibility of the gas turbine power plant to external and internal changes.  相似文献   
5.
The steady-state CH4 conversion by oxygen permeating through mixed-conducting (SrFe)0.7(SrAl2)0.3Oz composite membranes, comprising strontium-deficient SrFe(Al)O3-delta perovskite and monoclinic SrAl2O4-based phases, occurs via different mechanisms in comparison to the dry methane interaction with the lattice oxygen. The catalytic behavior of powdered (SrFe)0.7(SrAl2)0.3Oz, studied by temperature-programmed reduction in dry CH4 at 523-1073 K, is governed by the level of oxygen nonstoichiometry in the crystal lattice of the perovskite component and is qualitatively similar to that of other perovskite-related ferrites, such as Sr0.7La0.3Fe0.8Al0.2O3-delta. While extensive oxygen release from the ferrite lattice at 700-900 K leads to predominant total oxidation of methane, significant selectivity to synthesis gas formation, with H2/CO ratios close to 2, is observed above 1000 K, when a critical value of oxygen deficiency is achieved. The steady-state oxidation over dense membranes at 1123-1223 K results, however, in prevailing total combustion, particularly due to excessive oxygen chemical potential at the membrane surface. In combination with surface-limited oxygen permeability, mass transport limitations in a porous layer at the membrane permeate side prevent reduction and enable stable operation of (SrFe)0.7(SrAl2)0.3Oz membranes under air/methane gradient. Taking into account the catalytic activity of SrFeO3-delta-based phases for the partial oxidation of methane to synthesis gas and the important role of mass transport-related effects, one promising approach for membrane development is the fabrication of thick layer of porous ferrite-based catalyst at the surface of dense (SrFe)0.7(SrAl2)0.3Oz composite.  相似文献   
6.
Developments of intermediate-temperature solid oxide fuel cells (IT SOFCs) require novel anode materials with a high electrochemical activity at 800–1070 K. The polarization of cermet anodes, made of nickel, ceria and yttria-stabilized zirconia (YSZ) and applied onto a YSZ solid electrolyte, can be significantly reduced by catalytically active ceria additions, the relative role of which increases with decreasing temperature. Further improvement is observed when using Ce0.8Gd0.2O2– (CGO) having a high oxygen ionic conductivity instead of undoped ceria, owing to enlargement of the electrochemical reaction zone. Nanocrystalline CGO powders with grain sizes of 8–35 nm were thus synthesized via the cellulose-precursor technique and introduced into Ni–CGO–YSZ cermets, and tested in contact with a (La0.9Sr0.1)0.98Ga0.8Mg0.2O3– (LSGM) electrolyte at 873–1073 K. The results showed that the anode performance can be enhanced by additional surface activation, in particular by impregnation with a Ce-containing solution, and also by incorporation of YSZ, which probably acts as a cermet-stabilizing component. The overpotential of the surface-modified Ni–CGO (25 wt%–75 wt%) anode in a 10% H2/90% N2 atmosphere was approximately 110 mV at 1073 K with a current density of 200 mA/cm2.Presented at the OSSEP Workshop Ionic and Mixed Conductors: Methods and Processes, Aveiro, Portugal, 10–12 April 2003  相似文献   
7.
The effect of the radius of the alkali-earth cation substituted into the A sublattice of La0.5A0.5Mn0.5Ti0.5O3–δ (А = Са, Sr, Ba) perovskites on their stability and transport and thermomechanical properties is considered. The increase in the cation radius is shown to improve the phase stability and decrease the conductivity under both oxidative and reductive conditions. The thermal and chemical expansion of La0.5A0.5Mn0.5Ti0.5O3–δ ceramics is studied by dilatometry in controlled atmospheres and a wide temperature range at p(O2)=10–21–0.21 atm. The coefficients of thermal expansion of La0.5A0.5Mn0.5Ti0.5O3–δ are in the interval of (10.7–14.3)× 10–6 K–1, i.e., compatible with those of standard solid electrolytes of solid-oxide fuel cells. The maximum chemical expansion does not exceed 0.2% at isothermal reduction in the CO?CO2 mixture.  相似文献   
8.
The oxygen hyperstoichiometry of K2NiF4-type La2Ni0.9Fe0.1O4+δ, studied by thermogravimetric analysis and coulometric titration in the oxygen partial pressure range 6×10−5-0.7 atm at 923-1223 K, is considerably higher than that of undoped lanthanum nickelate. The p(O2)-T-δ diagram of iron-doped lanthanum nickelate can be adequately described by introducing point-defect interaction energy in the concentration-dependent part of defect chemical potentials and accounting for the site-exclusion effects. The critical factors affecting the equilibrium oxygen incorporation process include coulombic repulsion of interstitial anions, trapping of the p-type electronic charge carriers by iron, and interaction between Fe3+ and holes localized on nickel cations. Due to low chemical expansion of La2Ni0.9Fe0.1O4+δ lattice, the thermodynamic functions governing oxygen intercalation, site-blocking factors and hole mobility are all independent of the defect concentrations. The predominant 3+ state of iron cations under oxidizing conditions was confirmed by the Mössbauer spectroscopy. The stability of La2NiO4-based phase in reducing atmospheres is essentially unaffected by doping.  相似文献   
9.
Phase relationships, thermal expansion and electrical properties of Mg1 − xFexO (x = 0.1-0.45) cubic solid solutions and Fe3 − x − yMgxCryO4 ± δ (x = 0.7-0.95; y = 0 or 0.5) spinels were studied at 300-1770 K in the oxygen partial pressure range from 10 Pa to 21 kPa. Increasing iron content enlarges the spinel phase stability domain at reduced oxygen pressures and elevated temperatures. The total conductivity of the spinel ceramics is predominantly n-type electronic and is essentially p(O2)-independent within the stability domain. The computer simulations using molecular dynamics technique confirmed that overall level of ion diffusion remains low even at high temperatures close to the melting point. Temperature dependencies of the total conductivity in air exhibit a complex behavior associated with changing the dominant defect-chemistry mechanism from prevailing formation of the interstitial cations above 1370-1470 K to the generation of cation vacancies at lower temperatures, and with kinetically frozen cation redistribution in spinel lattice below 700-800 K. The average thermal expansion coefficients of the spinel ceramics calculated from dilatometric data in air vary in the range (9.6-10.0) × 10− 6 K− 1 at 300-500 K and (13.2-16.1) × 10− 6 K− 1 at 1050-1370 K. Mg1 − xFexO solid solutions undergo partial decomposition on heating under oxidizing and mildly reducing conditions, resulting in the segregation of spinel phase and conductivity decrease.  相似文献   
10.
Small (2 mol%) cobalt oxide additions to ceria-gadolinia (CGO) materials considerably improve sinterability, making it possible to obtain ceramics with 95–99% density and sub-micrometre grain sizes at 1,170–1,370 K. The addition of Co causes a significant shift of the electrolytic domain to lower pO2. This modification to the minor electronic conductivity of the electrolyte material has influence on the cathodic oxygen reduction reaction. The impedance technique is shown to provide information not only about polarisation resistance, but also about the active electrode area from analysis of the current constriction resistance. It is demonstrated that this current constriction resistance can be related to the minor electronic contributions to total conductivity in these materials. A simple imbedded grid approach gives control of the contact area allowing the properties of the electrolyte materials to be studied. A much lower polarisation resistance for the Co-containing CGO electrolyte is observed, which can be clearly attributed to an increased three-phase reaction area in the Co-containing material, as a consequence of elevated p-type conductivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号