首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
化学   31篇
力学   2篇
物理学   10篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2015年   3篇
  2013年   3篇
  2012年   5篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2006年   1篇
  2003年   4篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
  1973年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Studies conducted by Atomic Minerals Directorate of Exploration and Research (AMD) of Hyderabad, India had established the presence of higher concentrations of uranium in Lambapur and Peddagattu areas of Nalgonda district, AP, India and it was estimated that it could be a viable source for commercial extraction. The envisaged extraction process involves dispersion of radioactive particulate matter into atmosphere. Environmental radioactive studies in and around proposed mining areas at this point of time will be extremely useful for establishing base line data before a large scale uranium extraction process comes into existence. To this end, Solid State Nuclear Track Detectors were installed to evaluate indoor radon and thoron concentration levels in the dwellings of the area. The geometric means of radon and thoron concentration levels were found to be (7.1±0.2)×101 and (6.7±0.3)×101 Bq/m3, respectively. Simultaneously, natural background radiation measurements were also made and these levels are found to vary from 770 to 3995 μGy/y in the spatial distribution.  相似文献   
2.
A mutant strain ofPichia stipitis, FPL-061, was obtained by selecting for growth on L-xylose in the presence of respiratory inhibitors. The specific fermentation rate of FPL-061, was higher than that of the parent,Pichia stipitis CBS 6054, because of its lower cell yield and growth rate and higher specific substrate uptake rate. With a mixture of glucose and xylose, the mutant strain FPL-061 produced 29.4 g ethanol/L with a yield of 0.42 g ethanol/g sugar consumed. By comparison, CBS 6054 produced 25.7 g ethanol/L with a yield of 0.35 gJg. The fermentation was most efficient at an aeration rate of 9.2 mmoles O2 L-1 h-1. At high aeration rates (22 mmoles O2 L-1 h-1), the mutant cell yield was less than that of the parent. At low aeration rates, (1.1 to 2.5 O2 L-1 h-1), cell yields were similar, the ethanol formation rates were low, and xylitol accumulation was observed in both the strains. Both strains respired the ethanol once sugar was exhausted. We infer from the results that the mutant, P.stipitis FPL-061, diverts a larger fraction of its metabolic energy from cell growth into ethanol production.  相似文献   
3.
We give a complete bifurcation and stability analysis for the relative equilibria of the dynamics of three coupled planar rigid bodies. We also use the equivariant Weinstein-Moser theorem to show the existence of two periodic orbits distinguished by symmetry type near the stable equilibrium. Finally we prove that the dynamics is chaotic in the sense of Poincaré-Birkhoff-Smale horseshoes using the version of Melnikov's method suitable for systems with symmetry due to Holmes and Marsden.  相似文献   
4.
Self‐assembly of the naturally occurring sweetening agent, glycyrrhizic acid (GA) in water is studied by small‐angle X‐ray scattering and microscopic techniques. Statistical analysis on atomic force microscopy images reveals the formation of ultralong GA fibrils with uniform thickness of 2.5 nm and right‐handed twist with a pitch of 9 nm, independently of GA concentration. Transparent nematic GA hydrogels are exploited to create functional hybrid materials. Two‐fold and three‐fold hybrids are developed by introducing graphene oxide (GO) and in situ‐synthesized gold nanoparticles (Au NPs) in the hydrogel matrix for catalysis applications. In the presence of GO, the catalytic efficiency of Au NPs in the reduction of p‐nitrophenol to p‐aminophenol is enhanced by 2.5 times. Gold microplate single crystals are further synthesized in the GA hydrogel, expanding the scope of these hybrids and demonstrating their versatility in materials design.  相似文献   
5.
We report for the first time on the templating effect of β-lactoglobulin amyloid-like fibrils to synthesize gold single crystals of several decades of μm in dimensions. The gold single crystals were produced by reducing an aqueous solution of chloroauric acid by β-lactoglobulin amyloid protein fibrils. Atomic force microscopy, conventional and scanning transmission electron microscopy, electron diffraction and optical microscopy techniques were combined to characterize the structure of the gold crystals. The single-crystalline features of these macroscopic gold crystals are witnessed by their distinctive hexagonal and triangular shape and are confirmed by selected area electron diffraction (SAED). UV-vis absorption spectrum, recorded after a reaction time of 6h at the heating temperature of 55°C showed a surface plasmon resonance peak at 540 nm. With the increase of reaction time to 24h, the absorption spectrum peaks shift to a very broad and higher wavelength region extending up to near infrared region. Remarkably, these single crystalline gold crystals show auto fluorescence when illuminated to UV lamp. Further increase in β-lactoglobulin amyloid fibrils concentration above the isotropic-nematic transition, drives the formation of gold single crystals microplates stacking together and self-assembling into new hierarchical, layered protein-gold hybrid composites.  相似文献   
6.
New biocompatible temperature-responsive hydrogels have been obtained by using unprecedented low concentration of amyloid fibril-PNiPAM hybrids. The viscoelasticity of the hydrogels can be finely controlled by tuning the PNiPAM layers without changing the structure or concentration of the amyloid fibrils.  相似文献   
7.
8.
We review the continuous monitoring of a qubit through its spontaneous emission, at an introductory level. Contemporary experiments have been able to collect the fluorescence of an artificial atom in a cavity and transmission line, and then make measurements of that emission to obtain diffusive quantum trajectories in the qubit's state. We give a straightforward theoretical overview of such scenarios, using a framework based on Kraus operators derived from a Bayesian update concept; we apply this flexible framework across common types of measurements including photodetection, homodyne, and heterodyne monitoring and illustrate its equivalence to the stochastic master equation formalism throughout. Special emphasis is given to homodyne (phase-sensitive) monitoring of fluorescence. The examples we develop are used to illustrate basic methods in quantum trajectories, but also to introduce some more advanced topics of contemporary interest, including the arrow of time in quantum measurement, and trajectories following optimal measurement records derived from a variational principle. The derivations we perform lead directly from the development of a simple model to an understanding of recent experimental results.  相似文献   
9.
Aggregation of gold nanoparticles of increasing size has been studied as a consequence of adsorption of 2-aminothiophenol (ATP) on gold nanoparticle surfaces. The capping property of ATP in the acidic pH range has been accounted from UV-vis absorption spectroscopy and surface-enhanced Raman scattering (SERS) studies. The effect of nanoparticle size (8-55 nm) on the nature of aggregation as well as the variation in the optical response due to variable degree of interparticle coupling effects among the gold particles have been critically examined. Various techniques such as transmission electron microscopy, X-ray diffraction, zeta-potential, and average particle size measurement were undertaken to characterize the nanoparticle aggregates. The aggregate size, interparticle distances, and absorption band wavelengths were found to be highly dependent on the pH of the medium and the concentration of the capping agent, ATP. The acquired SERS spectra of ATP relate the interparticle spacing. It has been observed that the SERS signal intensities are different for different sized gold nanoparticles.  相似文献   
10.
This paper describes the different ways of analyzing the output of a real-time device for measuring and counting airborne particles, the aerodynamic particle sizer (APS). This instrument is very widely used in aerosol research throughout the world. It is a time-of-flight instrument in which a particle's measured transit time in the changing flow in a jet passing between two laser beams is converted to its aerodynamic diameter. As the particle passes between the two laser beams, two signal processors, the small particle processor (SPP) and the large particle processor (LPP), independently provide measures of the particle's transit time from the light pulses that are produced. This information is related to the aerodynamic particle diameter of the particle (dae) by means of calibration against ‘unit’ density (1000 kg/m3) spheres. If more than one particle is involved in the analysis of particle transit time, then it gives rise to coincidence effects, resulting in ‘phantom’ particle generation. The SPP is known to generate phantom counts, while the LPP is known to reduce phantom counts. A new method is described in this paper that gives guidance on how to deal with such coincidence problems. The principle is that it relies on additional information to obtain ‘correction factors’. In this case, well-established theory for the aspiration efficiencies of thin-walled aerosol sampling probes has been used along with corresponding experimental data obtained in a wind tunnel using the APS. Results using this method are compared with various other methods that have been tried in the past. The paper provides insights on to how the user can operate the APS to avoid counting errors like those described, and the advantages and limitations of different correction methods are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号