首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   2篇
化学   22篇
数学   1篇
物理学   25篇
  2016年   2篇
  2013年   1篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1997年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1987年   2篇
排序方式: 共有48条查询结果,搜索用时 427 毫秒
1.
2.
3.
Flow-through electrochemical conversion (EC) of drug-like molecules was hyphenated to miniaturized nuclear magnetic resonance spectroscopy (NMR) via on-line solid-phase extraction (SPE). After EC of the prominent p38α mitogen-activated protein kinase inhibitor BIRB796 into its reactive products, the SPE step provided preconcentration of the EC products and solvent exchange for NMR analysis. The acquisition of NMR spectra of the mass-limited samples was achieved in a stripline probe with a detection volume of 150 nL offering superior mass sensitivity. This hyphenated EC–SPE–stripline-NMR setup enabled the detection of the reactive products using only minute amounts of substrate. Furthermore, the integration of conversion and detection into one flow setup counteracts incorrect assessments caused by the degradation of reactive products. However, apparent interferences of the NMR magnetic field with the EC, leading to a low product yield, so far demanded relatively long signal averaging. A critical assessment of what is and what is not (yet) possible with this approach is presented, for example in terms of structure elucidation and the estimation of concentrations. Additionally, promising routes for further improvement of EC–SPE–stripline-NMR are discussed.  相似文献   
4.
A practical comparison of MQMAS techniques   总被引:3,自引:0,他引:3  
A systematic experimental evaluation of several approaches to multiple-quantum MAS NMR was performed for spin-5/2 nuclei using (27)Al NMR of the aluminosilicate andalusite and the porous aluminum phosphate AlPO(4)-14 as model. Experiments were conducted in the fields of 9.4 and 17.6T using magic-angle spinning frequencies up to 30kHz and rf-field strengths of 250 and 120kHz. Numerical SIMPSON optimizations of the NMR parameters were performed alongside the experimental evaluations. Both theory and experiment show that the optimization is most critical for the species in the sample that have the largest quadrupolar coupling constant. For 5QMAS experiments it could be confirmed that the highest available rf-field strength and rotation frequency are favorable for the efficiency of the experiments. For 3QMAS experiments of sites with moderate quadrupolar coupling constants optimum results were obtained at less stringent conditions. The comparison of a FAM II-modification and DFS gave the expected improvement by a factor of about two with respect to a rectangular pulse. No significant difference between these techniques concerning the signal-to-noise ratios was obtained. An actual improvement of the isotropic resolution by a factor of about two was obtained going from 3QMAS to 5QMAS. In addition the resolution of the spectra increases by a factor of about two going from 9.4 to 17.6T.  相似文献   
5.
Solid-state nuclear magnetic resonance (NMR) probeheads using solenoid microcoils with an inner diameter of 300-400 microm are developed for the study of mass-limited solid samples. Some attention is paid to the mechanical ruggedness of the probes allowing sample changing. The performance, in terms of sensitivity and RF-characteristics, of these probeheads is studied for (1)H, (31)P, and (27)Al in different model compounds in view of the feasibility of specific applications. The results show that the sensitivity is high enough to detect approximately 10(14) spins/sqrt Hz with a signal-to-noise ratio of 1 in a single scan. A specific advantage of microcoils for solid-state NMR applications is that they can generate extremely high RF-fields if implemented in appropriate circuits. Using RF-powers in the hundreds of Watts range, RF-fields well in excess of 1MHz can be made. This allows the excitation of spectra of nuclei whose resonance lines are dispersed of several megahertz. This is particularly useful for quadrupolar nuclei experiencing large quadrupolar interactions as is demonstrated for (27)Al in single crystal and powdered minerals.  相似文献   
6.
We have recently shown that the sensitivity of single- and multiple-quantum NMR experiments of half-integer (N/2) quadrupolar nuclei can be increased significantly by introducing so-called double frequency sweeps (DFS) in various pulse schemes. These sweeps consist of two sidebands generated by an amplitude modulation of the RF carrier. Using a time-dependent amplitude modulation the sidebands can be swept through a certain frequency range. Inspired by the work of Vega and Naor (J. Chem. Phys. 75, 75 (1981)), this is used to manipulate +/-(m - 1) <--> +/-m (3/2 < or = m < or = N/2) satellite transitions in half-integer spin systems simultaneously. For (23)Na (I = 3/2) and (27)Al (I = 5/2) spins in single crystals it proved possible to transfer the populations of the outer +/-m spin levels to the inner +/-1/2 spin levels. A detailed analysis shows that the efficiency of this process is a function of the adiabaticity with which the various spin transitions are passed during the sweep. In powders these sweep parameters have to be optimized to satisfy the appropriate conditions for a maximum of spins in the powder distribution. The effects of sweep rate, sweep range, and RF field strength are investigated both numerically and experimentally. Using a DFS as a preparation period leads to significantly enhanced central transition powder spectra under both static and MAS conditions, compared to single pulse excitation. DFSs prove to be very efficient tools not only for population transfer, but also for coherence transfer. This can be exploited for the multiple- to single-quantum transfer in MQMAS experiments. It is demonstrated, theoretically and experimentally, that DFSs are capable of transferring both quintuple-quantum and triple-quantum coherence into single-quantum coherence in I = 5/2 spin systems. This leads to a significant enhancement in signal-to-noise ratio and strongly reduces the RF power requirement compared to pulsed MQMAS experiments, thus extending their applicability. This is demonstrated by (27)Al 3QMAS experiments on 9Al(2)O(3). 2B(2)O(3) and the mineral andalusite. In the latter compound, Al experiences a quadrupolar-coupling constant of 15.3 MHz in one of the sites. Finally a 5QMAS spectrum on 9Al(2)O(3). 2B(2)O(3) demonstrates the sensitivity enhancement of this experiment using a double frequency sweep.  相似文献   
7.
The role of extra-framework and framework aluminium in wet-ion exchanged Fe-ZSM5 has been studied using 29Si NMR and 27Al triple quantum magic angle spinning (3QMAS) NMR. A series of samples were studied, the parent material, the wet ion exchanged Fe-ZSM5 and Fe-ZSM5 that has been used in the decomposition of N2O with varying reaction conditions. Various framework and extra-framework aluminium species have been identified. It was found that cationic Fe species prefer to replace the Brønsted acid protons in their charge balancing role at those aluminium sites associated with the largest quadrupolar product. The framework aluminium atoms that pertain to the smaller quadrupolar product, which are either charge balanced by extra-framework aluminium or a proton, are much less prone to exchange. In the catalytic decomposition of N2O it seemed that water present in small amounts enhances the catalytic activity. However, water also decreases the long term stability and performance by dealuminating the zeolite framework. With a high amount of water present, Fe-ZSM5 was destabilised and catalytically inferior.  相似文献   
8.
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition.  相似文献   
9.
Gelatin nanoparticles can be tuned with respect to their drug loading efficiency, degradation rate, and release kinetics, which renders these drug carriers highly suitable for a wide variety of biomedical applications. The ease of functionalization has rendered gelatin an interesting candidate material to introduce specific motifs for selective targeting to specific organs, but gelatin nanoparticles have not yet been modified to increase their affinity to mineralized tissue. By means of conjugating bone‐targeting alendronate to biocompatible gelatin nanoparticles, a simple method is developed for the preparation of gelatin nanoparticles which exhibit strong affinity to mineralized surfaces. It has been shown that the degree of alendronate functionalization can be tuned by controlling the glutaraldehyde crosslinking density, the molar ratio between alendronate and glutaraldehyde, as well as the pH of the conjugation reaction. Moreover, it has been shown that the affinity of gelatin nanoparticles to calcium phosphate increases considerably upon functionalization with alendronate. In summary, gelatin nanoparticles have been developed, which exhibit great potential for use in bone‐specific drug delivery and regenerative medicine.

  相似文献   

10.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) has been used to determine the mass of a double-stranded 500 base-pair (bp) polymerase chain reaction (PCR) product with an average theoretical mass of the blunt-ended (i.e. unadenylated) species of 308 859.35 Da. The PCR product was generated from the linearized bacteriophage Lambda genome which is a double-stranded template. Utilization of ethanol precipitation in tandem with a rapid microdialysis step to purify and desalt the PCR product was crucial to obtain a precise mass measurement. The PCR product (0.8 pmol/μL) was electrosprayed from a solution containing 75% acetonitrile, 25 mM piperidine, and 25 mM imidazole and was infused at a rate of 200 nL/min. The average molecular mass and the corresponding precision were determined using the charge-states ranging from 172 to 235 net negative charges. The experimental mass and corresponding precision (reported as the 95% confidence interval of the mean) was 309 406 +/- 27 Da (87 ppm). The mass accuracy was compromised due to the fact that the PCR generates multiple products when using Taq polymerase due to the non-template directed 3'-adenylation. This results in a mixture of three PCR products with nearly identical mass (i.e. blunt-ended, mono-adenylated and di-adenylated) with unknown relative abundances that were not resolved in the spectrum. Thus, the experimental mass will be a weighted average of the three species which, under our experimental conditions, reflects a nearly equal concentration of the mono- and di-adenylated species. This report demonstrates that precise mass measurements of PCR products up to 309 kDa (500 bp) can be routinely obtained by ESI-FTICR requiring low femtomole amounts. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号