首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   6篇
化学   69篇
数学   3篇
物理学   12篇
  2024年   1篇
  2023年   3篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   11篇
  2012年   5篇
  2011年   5篇
  2010年   7篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2001年   1篇
  1993年   1篇
  1991年   1篇
  1983年   3篇
  1982年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
1.
Metal–organic frameworks containing multiple metals distributed over crystallographically equivalent framework positions (mixed-metal MOFs) represent an interesting class of materials, since the close vicinity of isolated metal centers often gives rise to synergistic effects. However, appropriate characterization techniques for detailed investigations of these mixed-metal metal–organic framework materials, particularly addressing the distribution of metals within the lattice, are rarely available. The synthesis of mixed-metal FeCuBTC materials in direct syntheses proved to be difficult and only a thorough characterization using various techniques, like powder X-ray diffraction, X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy, unambiguously evidenced the formation of a mixed-metal FeCuBTC material with HKUST-1 structure, which contained bimetallic Fe−Cu paddlewheels as well as monometallic Cu−Cu and Fe−Fe units under optimized synthesis conditions. The in-depth characterization showed that other synthetic procedures led to impurities, which contained the majority of the applied iron and were impossible or difficult to identify using solely standard characterization techniques. Therefore, this study shows the necessity to characterize mixed-metal MOFs extensively to unambiguously prove the incorporation of both metals at the desired positions. The controlled positioning of metal centers in mixed-metal metal–organic framework materials and the thorough characterization thereof is particularly important to derive structure–property or structure–activity correlations.  相似文献   
2.
In the crystal structure of the title homoleptic CrII complex, [Cr(CH3CN)6](C24H20B)2·CH3CN, the [Cr(CH3CN)6]2+ cation is a high‐spin d4 complex with strong static, rather than dynamic, Jahn–Teller distortion. The electron density of the cation was determined by single‐crystal X‐ray refinements using aspherical structure factors from wavefunction calculations. The detailed picture of the electronic density allowed us to assess the extent and directionality of the Jahn–Teller distortion of the CrII cation away from idealized octahedral symmetry. The topological analysis of the aspherical d‐electron density about the CrII cation showed that there are significant valence charge concentrations along the axial Cr—N axes. Likewise, there were significant valence charge depletions about the CrII cation along the equatorial Cr—N bonds. These charge concentrations are in accordance with a Jahn–Teller‐distorted six‐coordinate complex.  相似文献   
3.
Hybrid materials possessing piezo- and ferroelectric properties emerge as excellent alternatives to conventional piezoceramics due to their merits of facile synthesis, lightweight nature, ease of fabrication and mechanical flexibility. Inspired by the structural stability of aminophosphonium compounds, here we report the first A3BX6 type cyanometallate [Ph2(iPrNH)2P]3[Fe(CN)6] ( 1 ), which shows a ferroelectric saturation polarization (Ps) of 3.71 μC cm−2. Compound 1 exhibits a high electrostrictive coefficient (Q33) of 0.73 m4 C−2, far exceeding those of piezoceramics (0.034–0.096 m4 C−2). Piezoresponse force microscopy (PFM) analysis demonstrates the polarization switching and domain structure of 1 further confirming its ferroelectric nature. Furthermore, thermoplastic polyurethane (TPU) polymer composite films of 1 were prepared and employed as piezoelectric nanogenerators. Notably, the 15 wt % 1 -TPU device gave a maximum output voltage of 13.57 V and a power density of 6.03 μW cm−2.  相似文献   
4.
The compound 2,2-bis[4-(4-maleimidophenoxy phenyl)]propane was prepared by the imidization of bisamic acid of 2,2-bis(4-aminophenoxy phenyl)propane. Various nanoclays were blended with this bismaleimide and thermally cured. The structural characterization of the synthesized materials and the thermal properties of the bismaleimide and their blends were investigated through FTIR, 1H and 13C NMR, differential scanning calorimetry and thermo gravimetric analysis. Among the various clays investigated, Cloisite 15A shows strong influence on the cure exotherm of bismaleimide. Introduction of clay mineral into bismaleimide shifts the onset of curing exotherm to higher temperature and is nearly 40 °C. The thermal stability of the clay loaded cured bismaleimide increases and the presence of clay particles in the cured bismaleimide matrix enhances the char formation.  相似文献   
5.
A new method was adopted for the synthesis of benzo[b]carbazoles by Claisen condensation followed by Fischer indole cyclization. Newly synthesized benzo[b]carbazoles were treated with ethanol amine in the presence of polyphosphoric acid which leads to the formation of pyrazino carbazoles. All the synthesized compounds were characterized by all spectral means.  相似文献   
6.

The hepatitis B surface antigen manufactured by recombinant DNA technology is extracted from the culture media by density gradient centrifugation using cesium salts. Cesium is considered to be toxic, because it affects active ion transport by blocking potassium channels. The residual trace levels of cesium in hepatitis B vaccine samples are determined by suppressed ion chromatography. Hepatitis B vaccines contain various buffer salts, aluminum-containing adjuvants, proteins and traces of iron. The polyvalent cations (Al3+, Fe3+) and proteins degrade the chromatographic performance in terms of decreased retention time and poor reproducibility. Different sample preparation approaches were evaluated with the aim of eliminating these foulants: (1) filtration, (2) digestion and (3) digestion-protein precipitation. Quantitative elimination of these foulants was achieved in the digestion-protein precipitation sample clean-up approach. Cesium was separated on the IonPac CS17 column with suppressed conductivity detection. The results of the ion chromatography (IC) method were compared with ICP-MS analysis. The precision of determination was better than 6.5% (relative standard deviation) with a method detection limit of 45 ng mL−1. The expanded uncertainty in the measurement at 95% confidence level (coverage factor 2) is better than 16.3%.

  相似文献   
7.
Nano crystalline cesium (Cs) doped ZnO thin films were deposited on glass substrate by sol gel spin coating method with 1–3 mol.% doping concentration and different annealing temperatures. The deposited films were characterized by X-ray diffraction (XRD), Hall Effect, Photoluminescence (PL) and UV–Visible studies. XRD measurements reveal that all the samples abound in the wurtzite structure with polycrystalline nature. An increase in crystalline size from 19.60 to 44.54 nm is observed with the increase of doping concentration. Electrical conductivity of Cs doped ZnO films were observed from Hall effect measurements and the maximum carrier concentration obtained is 7.35 × 1018 cm?3. The near band emission (384 nm) peak intensity increases with the increase of Cs doping concentration and a maximum intensity 55,280 was observed for CZ3 film from PL spectrum. Also a low energy near infrared (NIR) emission peak centered at 1.62 eV appears for the Cs doped ZnO films. The average transmission of CZ film is 88 % and the absorption edge is red shifted with the increase of Cs doping concentration and also the optical conductivity increases in the UV region.  相似文献   
8.
Immobilization of catalysts on solid supports is a promising approach to combine the advantages of heterogeneous and homogeneous catalysts. Pd(PPh3)2Cl2, known as an extremely active homogeneous catalyst for the Sonogashira coupling reaction, has been immobilized on high-surface-area MCF (mesocellular foams)–type mesoporous silica powder modified with 3-aminopropyltriethoxysilane and subsequently with diphenylphosphine. The functionalized MCF-type silica and supported catalysts have been characterized by x-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR), elemental analysis, nitrogen sorption porosimetry, and scanning electron microscopy (SEM). Such supported Pd catalysts have proven to be useful recyclable reagents for copper- and amine-free Sonogashira coupling reactions of haloaromatic compounds with terminal alkynes.  相似文献   
9.
An efficient one-pot synthesis of α -hydroxy propargylic esters by chemoselective reduction followed by transesterification using NaBH4 in combination with CeCl3 · 7H2O is described.

Additional information

ACKNOWLEDGMENTS

One of the authors (Thangavel Saravanan) thanks Indian Institute of Technology (IIT) Madras and the University Grants Commission, India, for the fellowship. We thank the Sophisticated Analytical Instrumentation Facility (SAIF) and Department of Chemistry, IIT Madras, for NMR and mass analysis.  相似文献   
10.
Transparent conducting polycrystalline Al-doped ZnO (AZO) films were deposited on sapphire substrates at substrate temperatures ranging from 200 to 300 °C by pulsed laser deposition (PLD). X-ray diffraction measurement shows that the crystalline quality of AZO films was improved with increased substrate temperature. The electrical and optical properties of the AZO films have been systematically studied via various experimental tools. The room-temperature micro-photoluminescence (µ-PL) spectra show a strong ultraviolet (UV) excitonic emission and weak deep-level emission, which indicate low structural defects in the films. A Raman shift of about 11 cm−1 is observed for the first-order longitudinal-optical (LO) phonon peak for AZO films when compared to the LO phonon peak of bulk ZnO. The Raman spectra obtained with UV resonant excitation at room temperature show multi-phonon LO modes up to third order. Optical response due to free electrons of the AZO films was characterized in the photon energy range from 0.6 to 6.5 eV by spectroscopic ellipsometry (SE). The free electron response was expressed by a simple Drude model combined with the Cauchy model are reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号