首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   29篇
化学   325篇
晶体学   1篇
数学   10篇
物理学   24篇
  2023年   6篇
  2022年   6篇
  2021年   44篇
  2020年   19篇
  2019年   22篇
  2018年   11篇
  2017年   17篇
  2016年   22篇
  2015年   22篇
  2014年   21篇
  2013年   27篇
  2012年   25篇
  2011年   23篇
  2010年   13篇
  2009年   15篇
  2008年   24篇
  2007年   13篇
  2006年   7篇
  2005年   10篇
  2004年   8篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1976年   1篇
  1932年   1篇
排序方式: 共有360条查询结果,搜索用时 15 毫秒
1.
Cellulose - Chemical force microcopy, a variation of atomic force microscopy, opened the door to visualize chemical nano-properties of various materials in their natural state. The key function of...  相似文献   
2.
3.
4.
Journal of Thermal Analysis and Calorimetry - The aim of this work was to study the effect of ceramics particles addition (SiO2, ZnO, TiO2) on the ultraviolet (UV) aging of poly(lactic acid)...  相似文献   
5.
A combined experimental and computational approach was used to distinguish between different polymorphs of the pharmaceutical drug aspirin. This method involves the use of ab initio random structure searching (AIRSS), a density functional theory (DFT)-based crystal structure prediction method for the high-accuracy prediction of polymorphic structures, with DFT calculations of nuclear magnetic resonance (NMR) parameters and solid-state NMR experiments at natural abundance. AIRSS was used to predict the crystal structures of form-I and form-II of aspirin. The root-mean-square deviation between experimental and calculated 1H chemical shifts was used to identify form-I as the polymorph present in the experimental sample, the selection being successful despite the large similarities between the molecular environments in the crystals of the two polymorphs.  相似文献   
6.
The reversibility of imine bonds has been exploited to great effect in the field of dynamic covalent chemistry, with applications such as preparation of functional systems, dynamic materials, molecular machines, and covalent organic frameworks. However, acid catalysis is commonly needed for efficient equilibration of imine mixtures. Herein, it is demonstrated that hydrogen bond donors such as thioureas and squaramides can catalyze the equilibration of dynamic imine systems under unprecedentedly mild conditions. Catalysis occurs in a range of solvents and in the presence of many sensitive additives, showing moderate to good rate accelerations for both imine metathesis and transimination with amines, hydrazines, and hydroxylamines. Furthermore, the catalyst proved simple to immobilize, introducing both reusability and extended control of the equilibration process.  相似文献   
7.
The present paper is a continuation of comprehensive study regarding to synthesis and properties of pyrazoles and their derivatives. In its framework an experimental and theoretical studies of thermal decomposition of the 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline were performed. It was found, that the decompositions of the mentioned pyrazoline system in the solution and at the melted state proceed via completely different molecular mechanisms. These mechanisms have been explained in the framework of the Molecular Electron Density Theory (MEDT) with the computational level of B3LYP/6-31G(d). A Bonding Evolution Theory (BET) examination of dehydrochlorination of the 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline permits elucidation of the molecular mechanism. It was found, that on the contrary for most known HCl extrusion processes in solution, this reaction is realised via single-step mechanism.  相似文献   
8.
The so‐called magic methyl effect significantly boosts the bioactivities and physical properties of pharmacologically active drugs. Direct introduction of the methyl group by C?H activation was accomplished with a versatile iron catalyst, which enabled the C?H methylation of (hetero)benzamides, anilides, alkenes, and even alkanes by triazole assistance in a chemo‐, site‐ and diastereo‐selective fashion.  相似文献   
9.
Poly(carbonate‐urethane‐urea)s (PCUU) based on oligocarbonate diols (Mn ≈ 2000) with different length of the hydrocarbon chain as soft segments were synthesized and investigated. Carbonate oligomerols were obtained in a two‐step method from dimethyl carbonate (DMC) and linear α,ω‐diols (1,4‐butanediol, 1,5‐pentanediol, 1,6‐hexanediol, 1,9‐nonanediol, 1,10‐dekanediol and 1,12‐dodecanediol). Oligo(trimethylene carbonate) diol was synthesized using ring‐opening polymerization of trimethylence carbonate. PCUUs were obtained by prepolymer method using isophorone diisocyanate (IPDI) and water as a chain extender. Changes in polymers properties with increase of methylene group number between carbonate linkages were investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), tensile strength and hardness measurements. The thermal stability was also analyzed by means of thermogravimetric analysis (TGA). Based on FTIR analysis influence of methylene groups number between carbonate linkages on phase separation and concentration of allophanate and biuret groups in the samples were investigated. The obtained poly(carbonate‐urethane‐urea)s exhibited very good mechanical properties. Tensile strength and elongation at break were 40 MPa and 400–600%, respectively, depending on the oligocarbonate used. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
10.
Short α‐peptides with less than 10 residues generally display a low propensity to nucleate stable helical conformations. While various strategies to stabilize peptide helices have been previously reported, the ability of non‐peptide helical foldamers to stabilize α‐helices when fused to short α‐peptide segments has not been investigated. Towards this end, structural investigations into a series of chimeric oligomers obtained by joining aliphatic oligoureas to the C‐ or N‐termini of α‐peptides are described. All chimeras were found to be fully helical, with as few as 2 (or 3) urea units sufficient to propagate an α‐helical conformation in the fused peptide segment. The remarkable compatibility of α‐peptides with oligoureas described here, along with the simplicity of the approach, highlights the potential of interfacing natural and non‐peptide backbones as a means to further control the behavior of α‐peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号