首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In α‐peptides, the 8/10 helix is theoretically predicted to be energetically unstable and has not been experimentally observed so far. Based on our earlier studies on ‘helical induction’ and ‘hybrid helices’, we have adopted the ‘end‐capping’ strategy to induce the 8/10 helix in α‐peptides by using short α/β‐peptides. Thus, α‐peptides containing a regular string of α‐amino acids with alternating chirality were end capped by α/β‐peptides with 11/9‐helical motifs at the termini. Extensive NMR spectroscopy studies of these peptides revealed the presence of a hitherto unknown 8/10‐helical pattern; the H‐bonds in the shorter pseudorings were rather weak. The approach of using short helical motifs to induce new mixed helices in α‐peptides could provide avenues for more versatile design strategies.  相似文献   

2.
The highly constrained β‐amino acid ABOC induces different types of helices in β urea and 1:1 α/β amide oligomers. The latter can adopt 11/9‐ and 18/16‐helical folds depending on the chain length in solution. Short peptides alternating proteinogenic α‐amino acids and ABOC in a 2:1 α/β repeat pattern adopted an unprecedented and stable 12/14/14‐helix. The structure was established through extensive NMR, molecular dynamics, and IR studies. While the 1:1 α‐AA/ABOC helices diverged from the canonical α‐helix, the helix formed by the 9‐mer 2:1 α/β‐peptide allowed the projection of the α‐amino acid side chains in a spatial arrangement according to the α‐helix. Such a finding constitutes an important step toward the conception of functional tools that use the ABOC residue as a potent helix inducer for biological applications.  相似文献   

3.
Peptide foldamers containing both cis ‐β‐aminocyclopentanecarboxylic acid and α‐amino acid residues combined in various sequence patterns (ααβ, αααβ, αβααβ, and ααβαααβ) were screened using CD and NMR spectroscopy for the tendency to form helices. ααβ‐Peptides were found to fold into an unprecedented and well‐defined 16/17/15/18/14/17‐helix. By extending the length of the sequence or shifting a fragment of the sequence from one terminus to another in ααβ‐peptides, the balance between left‐handed and right‐handed helix populations present in the solution can be controlled. Engineering of the peptide sequence could lead to compounds with either a strong propensity for the selected helix sense or a mixture of helical conformations of opposite senses.  相似文献   

4.
Double helices are not common in polypeptides and proteins except in the peptide antibiotic gramicidin A and analogous l,d ‐peptides. In contrast to natural polypeptides, remarkable β‐double‐helical structures from achiral γ‐peptides built from α,β‐unsaturated γ‐amino acids have been observed. The crystal structures suggest that they adopted parallel β‐double helical structures and these structures are stabilized by the interstrand backbone amide H‐bonds. Furthermore, both NMR spectroscopy and fluorescence studies support the existence of double‐helical conformations in solution. Although a variety of folded architectures featuring distinct H‐bonds have been discovered from the β‐ and γ‐peptide foldamers, this is the first report to show that achiral γ‐peptides can spontaneously intertwine into β‐double helical structures.  相似文献   

5.
Protein‐mimics are of great interest for their structure, stability, and properties. We are interested in the synthesis of protein‐mimics containing triazole linkages as peptide‐bond surrogate by topochemical azide‐alkyne cycloaddition (TAAC) polymerization of azide‐ and alkyne‐modified peptides. The rationally designed dipeptide N3‐CH2CO‐Phe‐NHCH2CCH ( 1 ) crystallized in a parallel β‐sheet arrangement and are head‐to‐tail aligned in a direction perpendicular to the β‐sheet‐direction. Upon heating, crystals of 1 underwent single‐crystal‐to‐single‐crystal polymerization forming a triazole‐linked pseudoprotein with Gly‐Phe‐Gly repeats. During TAAC polymerization, the pseudoprotein evolved as helical chains. These helical chains are laterally assembled by backbone hydrogen bonding in a direction perpendicular to the helical axis to form helical sheets. This interesting helical‐sheet orientation in the crystal resembles the cross‐α‐amyloids, where α‐helices are arranged laterally as sheets.  相似文献   

6.
Antigen presenting cells present processed peptides via their major histocompatibility (MH) complex to the T cell receptors (TRs) of T cells. If a peptide is immunogenic, a signaling cascade can be triggered within the T cell. However, the binding of different peptides and/or different TRs to MH is also known to influence the spatial arrangement of the MH α‐helices which could itself be an additional level of T cell regulation. In this study, we introduce a new methodology based on differential geometric parameters to describe MH deformations in a detailed and comparable way. For this purpose, we represent MH α‐helices by curves. On the basis of these curves, we calculate in a first step the curvature and torsion to describe each α‐helix independently. In a second step, we calculate the distribution parameter and the conical curvature of the ruled surface to describe the relative orientation of the two α‐helices. On the basis of four different test sets, we show how these differential geometric parameters can be used to describe changes in the spatial arrangement of the MH α‐helices for different biological challenges. In the first test set, we illustrate on the basis of all available crystal structures for (TR)/pMH complexes how the binding of TRs influences the MH helices. In the second test set, we show a cross evaluation of different MH alleles with the same peptide and the same MH allele with different peptides. In the third test set, we present the spatial effects of different TRs on the same peptide/MH complex. In the fourth test set, we illustrate how a severe conformational change in an α‐helix can be described quantitatively. Taken together, we provide a novel structural methodology to numerically describe subtle and severe alterations in MH α‐helices for a broad range of applications. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
A series of 12‐amino acid peptide analogs is designed using point mutation strategy based on an α‐helical peptide template. The first mutation in the series, KL12, has an idealized facial amphiphilicity. Subsequent mutations are performed to increase hydrophobic or cationic contents. Idealized facial amphiphilicity show enhanced antimicrobial activity and selectivity against most of the tested microbes. Increasing hydrophobic contents further enhance antimicrobial potency; however, selectivity of the most hydrophobic analog is impaired due to non‐specific interactions with mammalian cell membrane. This study demonstrates that facial amphiphilicity and hydrophobic content are strongly correlated with antimicrobial activity and selectivity of antimicrobial peptides.  相似文献   

8.
Cyclic pentapeptides (e.g. Ac‐(cyclo‐1,5)‐[KAXAD]‐NH2; X=Ala, 1 ; Arg, 2 ) in water adopt one α‐helical turn defined by three hydrogen bonds. NMR structure analysis reveals a slight distortion from α‐helicity at the C‐terminal aspartate caused by torsional restraints imposed by the K(i)–D(i+4) lactam bridge. To investigate this effect on helix nucleation, the more water‐soluble 2 was appended to N‐, C‐, or both termini of a palindromic peptide ARAARAARA (≤5 % helicity), resulting in 67, 92, or 100 % relative α‐helicity, as calculated from CD spectra. From the C‐terminus of peptides, 2 can nucleate at least six α‐helical turns. From the N‐terminus, imperfect alignment of the Asp5 backbone amide in 2 reduces helix nucleation, but is corrected by a second unit of 2 separated by 0–9 residues from the first. These cyclic peptides are extremely versatile helix nucleators that can be placed anywhere in 5–25 residue peptides, which correspond to most helix lengths in protein–protein interactions.  相似文献   

9.
Supramolecular assembly of various artificially folded 12‐helical architectures composed of γ4‐Val, γ4‐Leu and γ4‐Phe residues is investigated. In contrast to the 12‐helices composed of γ4‐Val and γ4‐Leu residues, the helices with γ4‐Phe residues displayed unique elongated nanotubular architectures. The elongated nanotube assembly was further explored as a template for biomineralization of silver ions to silver nanowires. A comparative study using an analogous α‐peptide helix reveals the importance of the spatial arrangement of aromatic side chains along the helical cylinder in a 12‐helix. These results suggested that the proteolytically and structurally stable α,γ4‐hybrid peptide 12‐helices may serve as a new generation of potential templates in the design of functional biomaterials.  相似文献   

10.
In contrast to the myriad of methods available to produce α‐helices and antiparallel β‐sheets in synthetic peptides, just a few are known for the construction of stable, non‐cyclic parallel β‐sheets. Herein, we report an efficient on‐resin approach for the assembly of parallel β‐sheet peptides in which the N‐alkylated turn moiety enhances the stability and gives access to a variety of functionalizations without modifying the parallel strands. The key synthetic step of this strategy is the multicomponent construction of an N‐alkylated turn using the Ugi reaction on varied isocyano‐resins. This four‐component process assembles the orthogonally protected turn fragment and incorporates handles serving for labeling/conjugation purposes or for reducing peptide aggregation. NMR and circular dichroism analyses confirm the better‐structured and more stable parallel β‐sheets in the N‐alkylated peptides compared to the non‐functionalized variants.  相似文献   

11.
α‐Aminoxy peptides are peptidomimetic foldamers with high proteolytic and conformational stability. To gain an improved synthetic access to α‐aminoxy oligopeptides we used a straightforward combination of solution‐ and solid‐phase‐supported methods and obtained oligomers that showed a remarkable anticancer activity against a panel of cancer cell lines. We solved the first X‐ray crystal structure of an α‐aminoxy peptide with multiple turns around the helical axis. The crystal structure revealed a right‐handed 28‐helical conformation with precisely two residues per turn and a helical pitch of 5.8 Å. By 2D ROESY experiments, molecular dynamics simulations, and CD spectroscopy we were able to identify the 28‐helix as the predominant conformation in organic solvents. In aqueous solution, the α‐aminoxy peptides exist in the 28‐helical conformation at acidic pH, but exhibit remarkable changes in the secondary structure with increasing pH. The most cytotoxic α‐aminoxy peptides have an increased propensity to take up a 28‐helical conformation in the presence of a model membrane. This indicates a correlation between the 28‐helical conformation and the membranolytic activity observed in mode of action studies, thereby providing novel insights in the folding properties and the biological activity of α‐aminoxy peptides.  相似文献   

12.
β Helices—helices formed by alternating d,l ‐peptides and stabilized by β‐sheet hydrogen bonding—are found naturally in only a handful of highly hydrophobic peptides. This paper explores the scope of β‐helical structure by presenting the first design and biophysical characterization of a hydrophilic d,l ‐peptide, 1 , that forms a β helix in methanol. The design of 1 is based on the β‐hairpin/β helix—a new supersecondary that had been characterized previously only for hydrophobic peptides in nonpolar solvents. Incorporating polar residues in 1 provided solubility in methanol, in which the peptide adopts the expected β‐hairpin/β‐helical structure, as evidenced by CD, analytical ultracentrifugation (AUC), NMR spectroscopy, and NMR‐based structure calculations. Upon titration with water (at constant peptide concentration), the structure in methanol ( 1 m ) transitions cooperatively to an extended conformation ( 1 w ) resembling a cyclic β‐hairpin; observation of an isodichroic point in the solvent‐dependent CD spectra indicates that this transition is a two‐state process. In contrast, neither 1 m nor 1 w show cooperative thermal melting; instead, their structures appear intact at temperatures as high as 65 °C; this observation suggests that steric constraint is dominant in stabilizing these structures. Finally, the 1H NMR CαH spectroscopic resonances of 1 m are downfield‐shifted with respect to random‐coil values, a hitherto unreported property for β helices that appears to be a general feature of these structures. These results show for the first time that an appropriately designed β‐helical peptide can fold stably in a polar solvent; furthermore, the structural and spectroscopic data reported should prove useful in the future design and characterization of water‐soluble β helices.  相似文献   

13.
Many peptides and proteins with large sequences and structural differences self‐assemble into disease‐causing amyloids that share very similar biochemical and biophysical characteristics, which may contribute to their cross‐interaction. Here, we demonstrate how the self‐assembled, cyclic d,l ‐α‐peptide CP‐2 , which has similar structural and functional properties to those of amyloids, acts as a generic inhibitor of the Parkinson′s disease associated α‐synuclein (α‐syn) aggregation to toxic oligomers by an ?off‐pathway“ mechanism. We show that CP‐2 interacts with the N‐terminal and the non‐amyloid‐β component region of α‐syn, which are responsible for α‐syn′s membrane intercalation and self‐assembly, thus changing the overall conformation of α‐syn. CP‐2 also remodels α‐syn fibrils to nontoxic amorphous species and permeates cells through endosomes/lysosomes to reduce the accumulation and toxicity of intracellular α‐syn in neuronal cells overexpressing α‐syn. Our studies suggest that targeting the common structural conformation of amyloids may be a promising approach for developing new therapeutics for amyloidogenic diseases.  相似文献   

14.
The introduction of an amide bond linking side chains of the first and fifth amino acids forms a cyclic pentapeptide that optimally stabilizes the smallest known α‐helix in water. The origin of the stabilization is unclear. The observed dependence of α‐helicity on the solvent and cyclization linker led us to discover a novel long‐range n to π* interaction between a main‐chain amide oxygen and a uniquely positioned carbonyl group in the linker of cyclic pentapeptides. CD and NMR spectra, NMR and X‐ray structures, modelling, and MD simulations reveal that this first example of a synthetically incorporated long‐range n to π* CO???Cγ=Ο interaction uniquely enforces an almost perfect and remarkably stable peptide α‐helix in water but not in DMSO. This unusual interaction with a covalent amide bond outside the helical backbone suggests new approaches to synthetically stabilize peptide structures in water.  相似文献   

15.
Choline‐binding modules (CBMs) have a ββ‐solenoid structure composed of choline‐binding repeats (CBR), which consist of a β‐hairpin followed by a short linker. To find minimal peptides that are able to maintain the CBR native structure and to evaluate their remaining choline‐binding ability, we have analysed the third β‐hairpin of the CBM from the pneumococcal LytA autolysin. Circular dichroism and NMR data reveal that this peptide forms a highly stable native‐like β‐hairpin both in aqueous solution and in the presence of trifluoroethanol, but, strikingly, the peptide structure is a stable amphipathic α‐helix in both zwitterionic (dodecylphosphocholine) and anionic (sodium dodecylsulfate) detergent micelles, as well as in small unilamellar vesicles. This β‐hairpin to α‐helix conversion is reversible. Given that the β‐hairpin and α‐helix differ greatly in the distribution of hydrophobic and hydrophilic side chains, we propose that the amphipathicity is a requirement for a peptide structure to interact and to be stable in micelles or lipid vesicles. To our knowledge, this “chameleonic” behaviour is the only described case of a micelle‐induced structural transition between two ordered peptide structures.  相似文献   

16.
Maintaining specific conformations of peptide ligands is crucial for improving the efficacy of biological interactions. Here, a one‐pot polymerization strategy for stabilizing the α‐helical conformation of peptides while simultaneously constructing multimeric ligands is presented. The new method, termed stapling polymerization, uses radical polymerization between acryloylated peptide side chains and vinylic monomers. Studies with model peptides indicate that i, i+7 crosslinking is effective for the helix stabilization, whereas i, i+4 crosslinking is not. The stapling polymerization results in the formation of peptide–polyacrylamide conjugates that include ≈3–16 peptides in a single conjugate. This stapling polymerization provides a simple but powerful methodology to fabricate multimeric α‐helices that can further be developed to modulate multivalent biomacromolecular interactions.

  相似文献   


17.
18.
Peptides of homochiral α‐aminoxy acids of nonpolar side chains can form a 1.88‐helix. In this paper, we report the conformational studies of α‐aminoxy peptides 1 , 2 , 3 , which have functionalized side chains, in both nonpolar and polar solvents. 1H NMR, XRD, and FTIR absorption studies confirm the presence of the eight‐membered‐ring intramolecular hydrogen bonds (the N‐O turns) in nonpolar solvents as well as in methanol. CD studies of peptides 1 , 2 , 3 in different solvents indicate that a substantial degree of helical content is retained in methanol and acidic aqueous buffers. The introduction of functionalized side chains in α‐aminoxy peptides provides opportunities for designing biologically active peptides.  相似文献   

19.
The NMR‐solution structure of an α‐heptapeptide with a central Aib residue was investigated in order to verify that, in contrast to β‐peptides, short α‐peptides do not form a helical structures in MeOH. Although the central Aib residue was found to induce a bend in the experimentally determined structure, no secondary structure typical for longer α‐peptides or proteins was found. A β2/β3‐nonapeptide with polar, positively charged side chains was subjected to NMR analysis in MeOH and H2O. Whereas, in MeOH, it folds into a 10/12‐helix very similar to the structure determined for a corresponding β2/β3‐nonapeptide with only aliphatic side chains, no dominant conformation could be determined in H2O. Finally, the NMR analysis of a β3‐icosapeptide containing the side chains of all 20 proteinogenic amino acids in MeOH is described. It revealed that this 20mer folds into a 314‐helix over its whole length forming six full turns, the longest 314‐helix found so far. Together, our findings confirm that, in contrast to α‐peptides, β‐peptides not only form helices with just six residues, but also form helices that are longer than helical sections usually observed in proteins or natural peptides. The higher helix‐forming propensity of long β‐peptides is attributed to the conformation‐stabilizing effect of the staggered ethane sections in β‐peptides which outweighs the detrimental effect of the increasing macrodipole.  相似文献   

20.
Covalent side‐chain cross‐links are a versatile method to control peptide folding, particularly when α‐helical secondary structure is the target. Here, we examine the application of oxime bridges, formed by the chemoselective reaction between aminooxy and aldehyde side chains, for the stabilization of a helical peptide involved in a protein–protein complex. A series of sequence variants of the dimeric coiled coil GCN4‐p1 bearing oxime bridges at solvent‐exposed positions were prepared and biophysically characterized. Triggered unmasking of a side‐chain aldehyde in situ and subsequent cyclization proceed rapidly and cleanly at pH 7 in the folded protein complex. Comparison of folding thermodynamics among a series of different oxime bridges show that the cross links are consistently stabilizing to the coiled coil, with the extent of stabilization sensitive to the exact size and structure of the macrocycle. X‐ray crystallographic analysis of a coiled coil with the best cross link in place and a second structure of its linear precursor show how the bridge is accommodated into an α‐helix. Preparation of a bicyclic oligomer by simultaneous formation of two linkages in situ demonstrates the potential use of triggered oxime formation to both trap and stabilize a particular peptide folded conformation in the bound state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号