首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2018年   1篇
  2014年   1篇
  2011年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 7 毫秒
1
1.
Research on Chemical Intermediates - A highly efficient oligomer antimicrobial agent, polyhexamethylene guanidine hydrochloride (PHMGH), is added to mixtures of polyvinylpyrrolidone (PVP)/chitosan...  相似文献   
2.
A green approach for forming silver nanoparticles (Ag NPs) on ecofriendly highly absorbent nonwoven fabrics was investigated. The fiber blending ratio of highly absorbent nonwoven fabrics was optimized by simulated body fluid (SBF) and water absorption. SBF and water absorption ratios reached 42 and 42.9 times after addition of 50 wt% highly absorbent fibers. The Ag NPs were characterized by UV-visible spectrometry (UV-Vis), X-ray diffraction (XRD) and transmission electron microscopy (TEM). UV-Vis and XRD images confirmed the presence of Ag NPs. TEM observation revealed that Ag NPs were distributed at 5–10 nm. The results of antimicrobial activity showed that Ag NP dope is effective for producing antimicrobial nonwoven fabrics against E. coli and S. aureus.  相似文献   
3.
Peripheral nerve regeneration has been evaluated using a biodegradable nerve conduit, which is made of a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) cross-linked gelatin. The EDC/NHS crosslinked gelatin (ENG) conduit is brownish in appearance, and is concentric and round with a smooth outer surface and inner lumen. After subcutaneous implantation on the dorsal side of a rat, the degraded ENG conduit only evoked a mild tissue response, with the formation of a thin tissue capsule surrounding the conduit. Biodegradability of the ENG conduit and its effectiveness as a guidance channel has been examined by its use to repair a 10 mm gap in the rat sciatic nerve. As a result, the tubes degraded throughout the implantation period, but still remained circular with a thin round lumen until they were completely integrated with the enclosed nerves. Successful regeneration through the gap occurred in all the conduits over the three experimental periods of 4, 8, and 12 weeks. Histological observation showed that numerous myelinated axons had crossed through the gap region even at the shortest implantation period of 4 weeks. Peak amplitude, area under the muscle action potential curve, and nerve conductive velocity all showed an increase as a function of the recovery period, which indicates that the nerve had undergone adequate regeneration. These results indicate the superiority of the ENG materials and suggest that the novel ENG conduits provide a promising tool for neuro-regeneration.  相似文献   
4.
In this study, GCC protein was used for the first time to construct a biodegradable conduit for peripheral nerve repair. The GCC was highly stable with a sufficiently high level of mechanical properties and it was non-toxic and non-apoptotic which could maintain the survival and outgrowth of Schwann cells. Noninvasive bioluminescence imaging accompanied with histochemical assessment showed the GCC was highly biocompatible after subcutaneous implantation in transgenic mice. Electrophysiology, labeling of calcitonin gene-related peptide in the lumbar spinal cord and histology analysis also showed a rapid morphological and functional recovery for disrupted rat sciatic nerves repaired with the GCC conduits. Therefore, we conclude that the GCC can offer great nerve regeneration characteristics and can be a promising material for the successful repair of peripheral nerve defects.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号