首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Light-activated antimicrobial coatings were obtained by the covalently immobilizing photo-sensitizers in a hybrid organic/inorganic matrix. These coatings were deposited via sol-gel chemistry using epoxy and methyl functional silanes. The light-activated chromophores used in this study were Methylene Blue, Toluidine Blue O, and Rose Bengal. The immobilized photo-sensitizers did not leach from the coatings. The mechanically durable hybrid coatings comprising 2.5% by weight of Rose Bengal had a good adhesion to the glass surface. These coatings were tested for the photo-deactivation of Escherichia coli and Staphylococcus aureus using illumination by a commercial fluorescent lamp. Log reduction of E. coli and S. aureus were >4 when illuminated by the fluorescent lamp in 1 and 3?h, respectively. Due to its high mechanical durability and chemical resistance, such light-activated hybrid coatings are promising candidates for indoor applications in healthcare facilities.  相似文献   

2.
Silver nanoparticles (NPs) have received great attention, mainly due to their application as antimicrobial agents in diverse products, including textile- and paper-based materials. In this context, straightforward methodologies to monitor their cationic silver release capacity in diverse environments are required due to the rise of manufactured products containing silver NPs. Here, we describe the application of a potentiometric method based on a silver-selective electrode to monitor the kinetics of cationic release from cellulose/silver nanocomposites. We designed a set of experiments to apply this method to nanocomposites with several distinct types of cellulose matrices: vegetable, bacterial and nanofibrillated. The morphological features of the cellulose had a great influence on the distribution of silver NPs within the matrix as well as on the Ag+ release profiles. The cationic release profiles were interpreted based on common models, showing that, for the vegetal and bacterial cellulose nanocomposites, the kinetics is pseudo-first order, while for the nanofibrillated cellulose materials a model based on Fick’s power law provided the best fit.  相似文献   

3.
The current research presents an efficient, cheap, and safe antimicrobial material for widespread use based on copper nanoparticles (Cu-NPs) loaded on cellulose acetate (CA) matrix. A reduction process of CuSO4·5H2O has been performed to prepare Cu-NPs. The nanosized copper particles included oxidized Cu (15–20 nm). Two different loads of Cu-NPs were used in this study, 2% and 6% mol.%. The presence of Cu-NPs incorporated with CA films slightly affected the tensile index of the films, where low and high-loaded Cu-NPs enhanced the tensile index by small values ranged from 0.640 to 0.650 and 0.667, respectively. A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. It has been found that CA containing Cu-NPs (2%) exhibited the highest antimicrobial activity against all test microbes including S. aeureus (21 mm), P. aeruginosa (18 mm), C. albicans (19 mm), and Aspergillus niger (15 mm). Results also revealed that CA film with 6% exhibited lower activity than film with 2% Cu-NPs. The morphological properties of CA/Cu-NPs films were characterized by scanning electron microscopy and transmission electron microscope in addition to X-ray diffraction. Low-loaded Cu-NPs showed homogenous distribution through CA matrix while, the high-loaded Cu-NPs were agglomerated through CA matrix. Thermal properties illustrated the enhancement of thermal stability of the film with increasing the loaded Cu-NPs.  相似文献   

4.
Research on Chemical Intermediates - Manganese-oxide-intercalated bentonite clay (Mn3O4/BC) nanocomposites were synthesized via a thermal decomposition method using different precursors. The...  相似文献   

5.
This study investigates the feasibility of a novel nanocomposite (GC/Ag) of a genipin-crosslinked chitosan (GC) film in which was embedded various amounts of Ag nanoparticles for wound-dressing applications. In situ UV-vis results revealed that adding chitosan solution did not affect the characteristics of Ag nanoparticles. The water uptake ratios and surface hydrophilicity of the GC/Ag nanocomposite were better and the degradation rates slightly lower than those of the pure GC film. The presence of Ag nanoparticles enhanced L929 cell attachment and growth. Its function as an anti-microbial agent in a GC/Ag nanocomposite was assessed for Ag contents of over 100 ppm. In conclusion, silver ions had dual functions--structural reinforcement and provision of antimicrobial properties to a biocompatible polymer.  相似文献   

6.
《印度化学会志》2023,100(1):100842
In this study, copper oxide doped barium and calcium oxide were prepared by a simple precipitation method. Using the similar synthetic procedure, to alter the molar radio of metal precursor to prepared four different composites viz., CuO@BaO/CaO (0.5:0.4:0.1), CuO@BaO/CaO (0.5:0.3:0.2), CuO@BaO/CaO (0.5:0.2:0.3) and CuO@BaO/CaO (0.5:0.1:0.4). The prepared composites were evaluating the X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR), Scanning Electron Microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDAX) analysis. Antibacterial tests were carried out on the composite produced. The results show that the composite materials exhibit high antibacterial activity with CuO@BaO/CaO(0.5:0.3:0.2) exhibiting stronger activity than CuO@BaO/CaO (0.5:0.4:0.1) because barium concentration decreases and calcium concentration increases.  相似文献   

7.
Four new azaphilones named sassafrins A-D (1-4) were isolated from the methanol extract of the stromata of the fungus Creosphaeria sassafras (Xylariaceae, Ascomycetes). Their structures were elucidated by 2D NMR, HR-MS, IR, UV and CD spectroscopy. Sassafrin D (4) possesses a novel skeleton and its biosynthetic pathway is also discussed. In addition, all compounds showed broad-spectrum antimicrobial activity. Their apparently unique occurrence in C. sassafras supports the status of this fungus as a member of a distinct genus within the Xylariaceae, coinciding with molecular and morphological traits.  相似文献   

8.
Three new cage-like monoterpenoid indole alkaloids, scholarisines T–V (13), together with three known analogues 46 were isolated from the leaves of Alstonia scholaris. Among them, 2 represents a unique degraded derivative, whereas 3 shares a rare 5,16-seco lactone scaffold. The structures were mainly established by extensive spectroscopic data analyses, and their plausible biosynthesis pathway from picrinine were proposed. Compared with positive control cefotaxime, alkaloid 2 showed remarkable antibacterial activity against Bacillus subtilis with an MIC value of 3.12?μg/mL, whereas 13 exhibited significant antibacterial effects on Escherichia coli with an MIC value of 0.78?μg/mL.  相似文献   

9.
The synthesis of 2-(substituted phenyl)-2-oxoethyl 4-(pyrimidin-2-yl)piperazin-1-carbodithiodate (A1-A24) derivatives and 2-(4-substituted thiazol-2-ylamino)-2-oxoethyl 4-(pyrimidin-2-yl)piperazin-1-carbodithiodate (B1-B14) derivatives was undertaken starting from the potassium salt of 4-(2-pyrimidinyl)piperazine dithiocarbamate. The structures of the obtained compounds were elucidated by 1H NMR, 13C NMR, MS spectral data, and elemental analysis. The antimicrobial activity of the thirty eight newly synthesized compounds were tested against 12 microorganism strains using the microdilution technique. Compounds 2-(4-ethoxycarbonylthiazol-2-ylamino)-2-oxoethyl 4-(pyrimidin-2-yl)piperazin-1-carbodithiodate (B12), 2-(3-fluorophenyl)-2-oxoethyl 4-(pyrimidin-2-yl)piperazin-1-carbodithiodate (A18) and 2-(3,4-difluorophenyl)-2-oxoethyl 4-(pyrimidin-2-yl)piperazin-1-carbodithiodate (A21) were determined to possess high antimicrobial activity.  相似文献   

10.
In this study a series of new mannich bases were synthesized and characterized by elemental and spectral (IR, 1H NMR, 13C NMR) studies. All the synthesized compounds were evaluated for their antimicrobial activity by broth dilution method against two Gram negative strains (Escherichia coli and Pseudomonas aeruginosa), two Gram positive strains (Bacillus subtilis and Staphylococcus aureus) and fungal strain (Candida albicans and Aspergillus niger). Preliminary pharmacological evaluation revealed that the compounds (3f, 3i, 3j, and 3k) showed good activity against these strains. The result demonstrates the potential and importance of developing new mannich bases which would be effective against resistant bacterial and fungal strain.  相似文献   

11.
The enhanced thermal and antimicrobial activity of silver nanoparticles prompts their uses in many medical devices. Mesua ferrea L. seed oil based antimicrobial biocompatible hyperbranched and linear polyurethane/Ag nanocomposites have been prepared in dimethylformamide without using any extra reducing agent. Formation of the stable and well-dispersed Ag nanoparticles was confirmed by ultra violet, X-ray diffractometeric, transmission electron microscopic and Fourier transform infra-red spectroscopic analyses. The enhancement of properties like thermal stability by (46-53)°C and 42 °C, tensile strength to ∼170% and ∼180% for hyperbranched and linear polyurethanes respectively was observed by the formation of nanocomposites. The cytocompatibility test based on the inhibition of RBC hemolysis showed that the materials lack cytotoxicity. The nanocomposites showed biodegradability as conferred from the bacterial degradation. Dose dependent excellent antibacterial activity of the nanocomposites against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) bacteria and antifouling activity against Candida albicans was observed.  相似文献   

12.
As a green agricultural resource and a new alternative protein, edible insects have the potential to become an excellent source of biopolymer. In this study, a new ternary blend composites were formed based on the mixture of edible grasshopper protein and soybean protein isolates by adding pullulan (PUL). The combined effect of incorporation of antimicrobial agent methyl hesperidin (2.5 %, 5 %, 7.5 % and 10 %) was investigated. The addition of PUL can greatly improve the tensile strength of protein blend composites but has no positive impact on elongation at break. 5 % methyl hesperidin can further increase tensile strength to 7.36 MPa with no deterioration on elongation at break. The SEM and XRD results showed good compatibility between PUL and protein blend. The WVP and WCA results showed that the hydrophobicity of composites increased slightly. Moreover, thermal analysis presented that the thermal stabilities of composites were impaired. The increasing of methyl hesperidin content enhanced antibacterial activity against E. coli and S. aureus of ternary blend film, proving its application value as active packaging.  相似文献   

13.
Chlorhexidine is a widely used, di-cationic, broad-spectrum antimicrobial agent and losartan is a well-known, anionic-specific antagonist of AT1 renin–angiotensin receptor that acts as an anti-hypertensive agent. The combination of these molecules gives a chlorhexidine di-losartanate (ClxLos2) hydrophobic ion pair that spontaneously aggregates into nanoparticles (NPs). This work investigated the formation of ClxLos2 NPs using the analysis of the solid state by fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy and in aqueous environment by calorimetric, zeta potential and dynamic light scattering titrations. Furthermore, to demonstrate the potential antimicrobial activity of ClxLos2, in vitro antibacterial tests were conducted against Staphylococcus aureus (ATCC 27664), Streptococcus viridans (ATCC 11563) and Enterococcus faecalis (ATCC 14508). Based on these studies, it is proposed that ClxLos2 could be used for controlled drug release based on ionic dissociation during dilution, thereby avoiding the use of any solid matrix.  相似文献   

14.
We present a simple method of fabricating highly potent dual action antibacterial composites consisting of a cationic polymer matrix and embedded silver bromide nanoparticles. A simple and novel technique of on-site precipitation of AgBr was used to synthesize the polymer/nanoparticle composites. The synthesized composites have potent antibacterial activity toward both gram-positive and gram-negative bacteria. The materials form good coatings on surfaces and kill both airborne and waterborne bacteria. Surfaces coated with these composites resist biofilm formation. These composites are different from other silver-containing antibacterial materials both in the ease of synthesis and in the use of a silver salt nanoparticle instead of elemental silver or complex silver compounds. We also demonstrate the ability to tune the release of biocidal Ag(+) ions from these composites by controlling the size of the embedded AgBr nanoparticles. These composites are potentially useful as antimicrobial coatings in a wide variety of biomedical and general use applications.  相似文献   

15.
《先进技术聚合物》2018,29(7):1895-1901
This study aimed to develop polyelectrolyte‐structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic hydroxyethyl cellulose was synthesized and characterized by Fourier‐transform infrared, 1H NMR, and 13C NMR spectroscopy. Its nitrogen content was determined by Kjeldahl method. Polyelectrolyte‐structured antimicrobial food packaging materials were prepared using hydroxyethyl cellulose, cationic hydroxyethyl cellulose, and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of samples was investigated by SEM. The obtained results prove that produced food packaging materials have good thermal and antimicrobial properties, and they can be used as food packaging material in many industries.  相似文献   

16.
In this study, glyoxal-cross-linked Iota carrageenan (IC) /poly(vinyl alcohol) PVA films were prepared and loaded with silver nanoparticles via a green approach, consisting of sweet lime juice induced in-situ reduction of Ag(I) ions to nano silver within the film matrix. The formation of silver nanoparticles was confirmed using UV–visible spectrophotometry. The Ag NPs-loaded films were also characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR). The dynamic water uptake data were interpreted by the ‘Power functional model’. The films showed fair antimicrobial action against bacteria E. Coli.  相似文献   

17.
Five new unsaturated 2-amino-3-alcohols, crucigasterins A-E (2-6), were isolated together with known related compound 7 from the Mediterranean ascidian Pseudodistoma crucigaster and characterised as diacetyl derivatives (2a-6a) by spectroscopic methods. The threo-relative configuration of the amino alcohol portion was inferred by NOE analysis of the oxazolidinone derivative of crucigasterin A (2) as well as by 13C NMR comparison with synthetic threo and erythro model compounds. The co-occurring metabolites were assumed to have the same relative configuration as 2 by comparison of the diagnostic carbon value of C-1. The absolute stereochemistry of compound 7 that had not been previously reported was determined by applying the modified Mosher’s method on the corresponding N-acetyl derivative. The same absolute configuration was suggested for the other co-occurring crucigasterins by biogenetic considerations. Antibacterial and antifungal activities of selected crucigasterins were also evaluated.  相似文献   

18.
The antimicrobial activity of altholactone, a naturally extracted styryllactone isolated from Goniothalamus malayanus, was determined against Gram positive (S. aureus ATTC 25923, S. aureus ATTC 25392, and E. faecalis ATTC 29212) and Gram negative (E. coli ATTC 35218, S. typhi ATTC 14023 and P. aeruginosa ATCC 27853) reference bacteria and against the fungus C. albicans ATTC 10231. Different concentrations of altholactone (0, 12, 25, and 50 μg/mL) were used. Results revealed that altholactone inhibited the growth of all tested microbes except P. aeruginosa ATCC 27853 in a dose-dependent manner, with the highest cytotoxic effects occurring at 50 μg/mL. The average of the inhibition zones of the different concentrations was between 0-30 mm. Furthermore, altholactone-induced antimicrobial activity against the more sensitive microbes was assessed by measuring the minimal inhibitory concentration (MIC). Results indicated that Gram positive (S. aureus ATTC 25923, S. aureus ATTC 25392, and E. faecalis ATTC 29212) cells were more sensitive to altholactone than Gram negative ones (E. coli ATTC 35218, S. typhi ATTC 14023). C. albicans showed moderate sensitivity. These results indicate that altholactone might be a potential antimicrobial agent, particularly in ciprofloxacin-refractory S. aureus and E. faecalis infections. Further investigations are required to illustrate the mechanism(s) by which altholactone produces its antimicrobial effects.  相似文献   

19.
<正>A membrane composed of an alginate(ALG) layer and a chitosan(CHS) layer with sustained antimicrobial efficacy was prepared.Ciprofloxacin HC1(CIP) was incorporated into the ALG layer.Morphological feature of the composite membrane was analyzed by scanning electron microscopy(SEM).Water uptake capacity,in vitro drug release,and in vitro antimicrobial activity were evaluated.The composite membrane exhibited perfect binding characteristic between the two layers.The water uptake capacity of all the membranes was above 800%.The CIP could release from the composite membranes for 48 h.The membrane could control the bacterial growth persistently.The results suggested that this CHS/ALG composite membrane incorporated with CIP had the potential for wound dressing application.  相似文献   

20.
Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) combine light and photosensitizers to treat cancers and microbial infections, respectively. In PACT, the excitation of a photosensitizer drug with appropriate light generates reactive oxygen species (ROS) that kill pathogens in the proximity of the drug. PACT has considerably advanced with new light sources, biocompatible photosensitizers, bioconjugate methods, and efficient ROS production. The PACT technology has evolved to compete with or replace antibiotics, reducing the burden of antibiotic resistance. This review updates recent advances in PACT, with special references to light sources, photosensitizers, and emerging applications to microbial infestations. We also discuss PACT applied to COVID-19 causing SARS-CoV-2 treatment and disinfecting food materials and water. Finally, we discuss the pathogen selectivity and efficiency of PACT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号