首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7665篇
  免费   433篇
  国内免费   45篇
化学   5843篇
晶体学   69篇
力学   203篇
数学   623篇
物理学   1405篇
  2023年   45篇
  2022年   25篇
  2021年   137篇
  2020年   144篇
  2019年   145篇
  2018年   107篇
  2017年   107篇
  2016年   287篇
  2015年   232篇
  2014年   311篇
  2013年   503篇
  2012年   627篇
  2011年   699篇
  2010年   441篇
  2009年   409篇
  2008年   574篇
  2007年   466篇
  2006年   468篇
  2005年   391篇
  2004年   338篇
  2003年   281篇
  2002年   244篇
  2001年   132篇
  2000年   105篇
  1999年   58篇
  1998年   35篇
  1997年   54篇
  1996年   67篇
  1995年   49篇
  1994年   44篇
  1993年   47篇
  1992年   48篇
  1991年   34篇
  1990年   39篇
  1989年   33篇
  1988年   19篇
  1987年   22篇
  1986年   15篇
  1985年   36篇
  1984年   27篇
  1983年   23篇
  1982年   26篇
  1981年   19篇
  1980年   20篇
  1979年   15篇
  1978年   18篇
  1977年   27篇
  1976年   17篇
  1975年   14篇
  1970年   18篇
排序方式: 共有8143条查询结果,搜索用时 15 毫秒
1.
The aim of this study was to confirm pharmacokinetic screening of multiple components in healthy Korean subjects after oral administration of Samso-eum and perform quantitation of active components in the human plasma. Thirteen potential bioactive components [puerarin (PRR), daidzin, nodakenin, ginsenoside Rb1, 18β-glycyrrhetinic acid (18β-GTA), 6-shogaol, naringin, glycyrrhizin, hesperidin, platycodin D, naringenin, hesperetin, and 6-gingerol] were screened based on literature. The results showed that three analytes (daidzin, naringenin, and hesperetin) were detected in trace amounts. In addition, PRR and 18β-GTA were detected in human plasma after the oral administration of Samso-eum. In this study, a liquid chromatography–electrospray ionization-tandem mass spectrometry method was validated for the simultaneous determination of PRR and 18β-GTA in human plasma. This was the first study to evaluate pharmacokinetics of PRR and 18β-GTA after the usual oral dose of Samso-eum (30 g containing 102.48 mg PRR, 48.18 mg glycyrrhizin) in human subjects.  相似文献   
2.
This paper addresses the problem of global robust fault accommodation tracking for a class of uncertain nonlinear systems with unknown powers and actuator faults. It is assumed that the powers of the concerned system are unknown time-varying functions, all system nonlinearities are unknown, and unknown actuator faults depend on the time-varying power of a control input. A fault accommodation state-feedback controller is explicitly constructed based on the nonlinear error transformation technique using time-varying performance functions. Global tracking with the preselected performance bounds is established in the presence of unknown time-varying powers and unexpected actuator faults. Different from the previous results dealing with the problem of unknown time-varying powers, the proposed tracking strategy does not require the knowledge of the bounds of the time-varying powers and the nonlinear bounding functions of system nonlinearities. An underactuated mechanical system is simulated to validate the effectiveness of the proposed theoretical approach.  相似文献   
3.
In this paper,the methodology of the directed relation graph with error propagation and sensitivity analysis(DRGEPSA),proposed by Niemeyer et al.(Combust Flame 157:1760-1770.2010).and its differences to the original directed relation graph method are described.Using DRGEPSA,the detailed mechanism of ethylene containing 71 species and 395 reaction steps is reduced to several skeletal mechanisms with different error thresholds.The 25-species and 131-step mechanism and the 24-species and115-step mechanism are found to be accurate for the predictions of ignition delay time and laminar flame speed.Although further reduction leads to a smaller skeletal mechanism with 19 species and 68 steps,it is no longer able to represent the correct reaction processes.With the DRGEPSA method,a detailed mechanism for n-dodecane considering low-temperature chemistry and containing 2115 species and8157 steps is reduced to a much smaller mechanism with249 species and 910 steps while retaining good accuracy.If considering only high-temperature(higher than 1000 K)applications,the detailed mechanism can be simplified to even smaller mechanisms with 65 species and 340 steps or48 species and 220 steps.Furthermore,a detailed mechanism for a kerosene surrogate having 207 species and 1592 steps is reduced with various error thresholds and the results show that the 72-species and 429-step mechanism and the66-species and 392-step mechanism are capable of predicting correct combustion properties compared to those of the detailed mechanism.It is well recognized that kinetic mechanisms can be effectively used in computations only after they are reduced to an acceptable size level for computation capacity and at the same time retaining accuracy.Thus,the skeletal mechanisms generated from the present work are expected to be useful for the application of kinetic mechanisms of hydrocarbons to numerical simulations of turbulent or supersonic combustion.  相似文献   
4.
The first total synthesis of glycocin F, a uniquely diglycosylated antimicrobial peptide bearing a rare S‐linked N‐acetylglucosamine (GlcNAc) moiety in addition to an O‐linked GlcNAc, has been accomplished using a native chemical ligation strategy. The synthetic and naturally occurring peptides were compared by HPLC, mass spectrometry, NMR and CD spectroscopy, and their stability towards chymotrypsin digestion and antimicrobial activity were measured. This is the first comprehensive structural and functional comparison of a naturally occurring glycocin with an active synthetic analogue.  相似文献   
5.
6.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
7.
8.
9.
Benzofurocarbazole moieties are commonly used donor structures in the design of thermally activated delayed fluorescence (TADF) emitters. However, only 5 H-benzofuro[3,2-c]carbazole (34BFCz) has been reported and, to the best of our knowledge, no other benzofurocarbazole derivatives have been covered in the literature. In the present study, two further benzofurocarbazole moieties, 12 H-benzofuro[3,2-a]carbazole (12BFCz) and 7 H-benzofuro[2,3-b]carbazole (23BFCz), have been synthesized to investigate the effect of the donor structure on the photophysics and device parameters of TADF emitters. Two benzofurocarbazole-derived TADF emitters, 12-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-12 H-benzofuro[3,2-a]carbazole (o12BFCzTrz) and 7-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-7 H-benzofuro[2,3-b]carbazole (o23BFCzTrz), have been compared with 5-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-5 H-benzofuro[3,2-c]carbazole (oBFCzTrz). The benzofurocarbazole donor structure governs the TADF characteristics, such as charge-transfer property and emission color. The 12BFCz donor has proved to be effective in blue-shifting the emission color, and 34BFCz has proven useful for improving the external quantum efficiency (EQE). The 12BFCz-derived o12BFCzTrz showed blue-shifted color coordinates of (0.159, 0.288), compared to (0.178, 0388) for o23BFCzTrz and (0.169, 0.341) for oBFCzTrz. The 34BFCz-derived oBFCzTrz exhibited an EQE of 22.9 %, compared to 19.2 % for o12BFCzTrz and 21.1 % for o23BFCzTrz.  相似文献   
10.
Molecular confinement plays a significant effect on trapped gas and solvent molecules. A fundamental understanding of gas adsorption within the porous confinement provides information necessary to design a material with improved selectivity. In this regard, metal–organic framework (MOF) adsorbents are ideal candidate materials to study confinement effects for weakly interacting gas molecules, such as noble gases. Among the noble gases, xenon (Xe) has practical applications in the medical, automotive and aerospace industries. In this Communication, we report an ultra-microporous nickel-isonicotinate MOF with exceptional Xe uptake and selectivity compared to all benchmark MOF and porous organic cage materials. The selectivity arises because of the near perfect fit of the atomic Xe inside the porous confinement. Notably, at low partial pressure, the Ni–MOF interacts very strongly with Xe compared to the closely related Krypton gas (Kr) and more polarizable CO2. Further 129Xe NMR suggests a broad isotropic chemical shift due to the reduced motion as a result of confinement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号